仙女座星系

仙女座星系

位于仙女座方位的拥有巨大盘状结构的旋涡星
仙女座星系(Andromedagalaxy)是离我们所在的银河系最近的一个星系,距离地球大约250万光年,是一个典型的螺旋星系,但规模比银河系大。仙女座星系直径达16万光年(银河系为8万光年),含有2亿颗以上的恒星。
  • 中文名:仙女座星系
  • 外文名:Andromedagalaxy
  • 别名:M31

概述

仙女座星系,位于仙女星座的一个巨型旋涡星系,视星等为3.5等,肉眼可见。是银河系的近邻。视星等为3.5等。肉眼可以见到它,状如暗弱的椭圆小光斑。很早以前天文学家就发现了它,梅西叶在1764年8月3日为它编号。

仙女座星系是距离我们银河系最近的大星系。一般认为银河系的外观与仙女座大星系十分很像,两者共同主宰着本星系群。仙女座星系弥漫的光线是由数千亿颗恒星成员共同贡献而成的。几颗围绕在仙女座星系影像旁的亮星,其实是银河系里的星星,比起背景物体要近得多了。

仙女座星系又名为M31,因为它是著名的梅西耶星团星云表中的第31号弥漫天体。M31的距离相当远,从它那儿发出的光需要200万年的时间才能到达地球。星云中的恒星可以划分成约20个群落,这意味着它们可能来自仙女座星系“吞噬”的较小星系。

观测简史

最早的仙女座星系观测纪录可能出自波斯的天文学家Al Sufi,他描述它是"小云",星图上的标记在那个时代也是小云。第一个以望远镜进行观测和记录是西门·马里乌斯,时为1612年。在1764年梅西尔将他编目为M31,并不正确地相信西门·马里乌斯为发现者,却未察觉苏菲(Al Sufi)在更加早期的工作。在1785年,天文学家威廉·赫歇尔注意到在星系的核心区域有偏红色的杂色,使他相信这是所有星云中最靠近的"大星云",并依据星云的颜色和亮度估计(并不正确)距离应在天狼星的2,000倍之内。

威廉·哈金斯在1864年观察仙女座星系的光谱,注意到与气体星云不同。仙女座星系的光谱是在频率上连续的连续光谱上叠加上了暗线,很像是单独的一颗恒星,因此他推论仙女座星系具有恒星的本质。在1885年,一颗超新星出现在仙女座星系(现在知道是仙女座 S),这是第一次看见如此遥远星系中的恒星。在当时,他的亮度被低估了,只被认为是一颗新星,因此称为 1885新星。

这个星系的第一张照片是以撒·罗伯斯于1887年在他坐落在英国索赛克斯郡的私人天文台拍摄的。长时间的曝光使世人第一次看见她的螺旋结构。可是,在当时这类被认为星云的物体,一般都相信是在我们银河系内的天体,罗伯茨也错误的相信M31和类似的螺旋星云实际上都是正在形成的太阳系、卫星和诞生中的行星。M31相对于太阳系的径向速度在1912年被斯里佛(Vesto Melvin Slipher)在罗威尔天文台使用光谱仪测量出来。相对于太阳系每秒300公里(186英里/秒)的速度,这结果是当时最快的速度记录。

发现过程

1786年,F.W.赫歇耳第一个将它列入能分解为恒星的星云。1924年,哈勃在照相底片上证认出仙女座星系旋臂上的造父变星,并根据周光关系算出距离,确认它是银河系之外的恒星系统。1944年,巴德又分辨出仙女座星系核心部分的天体,证认出其中的星团和恒星。

M31在天文学史上有着重要的地位。1786年,赫歇耳第一个将它列入能分解为恒星的星云。1924年,哈勃在照相底片上证认出 M31旋臂上的造父变星,并根据周光关系算出距离,确认它是银河系之外的恒星系统。现代测定它的距离是 670千秒差距(220万光年)。直径是 50千秒差距(16万光年),为银河系的两倍,是本星系群中最大的一个。1944年,巴德又分辨出 M31核心部分的天体,证认出其中的星团和恒星,并指明星族的空间分布与银河系相。M31旋臂上是极端星族I,其中有O-B型星、亮超巨星、OB星协、电离氢区。在星系盘上观测到经典造父变星、新星、红巨星、行星状星云等盘族天体。中心区则有星族Ⅱ造父变星。晕星族成员的球状星团离星系主平面可达30千秒差距以外。近年来还发现,M31成员的重元素含量,从外围向中心逐渐增加。这种现象表明,恒星抛射物质致使星际物质重元素增多的过程,在星系中心区域比外围部分频繁得多。

1914年皮斯探知M31有自转运动。1939年以来历经巴布科克等人的研究,测出从中心到边缘的自转速度曲线,并由此得知星系的质量。据目前估计,M31的质量不小于 3.1×1011个太阳质量,比银河系大一倍以上,是本星系群中质量最大的一个。M31的中心有一个类星核心,直径只有25光年,质量相当于107太阳,即一立方秒差距内聚集1500个恒星。类星核心的红外辐射很强,约等于银河系整个核心区的辐射。但那里的射电却只有银心射电的1/20。射电观测指出,中性氢多集中在半径为10千秒差距的宽环带中。氢的含量为总质量的1%,这个比值较之银河系的(1.4~7%)要小。由此可以认为,M31的气体大部分已形成恒星。M31和银河系相似,对二者进行对比研究,就能为了解银河系的运动、结构和演化提供重要的线索。

结构状况

以可见光下看见的形状为依据,仙女座星系在de Vaucouleurs-Sandage延伸与扩张的分类系统下被分类为SA(s)b的螺旋星系。然而,在2MASS巡天的资料中,M31的核球呈现箱状的形状,这暗示著M31实际上是棒旋星系,而我们几乎是正对着长轴的方向观察这个星系。仙女座星系也是一个LINRER星系(低游离核辐射线区),在分类上是一种很普通的活跃星系核。

在2005年,天文学家使用凯克望远镜观察到细微的像被喷洒而向外延伸的恒星,实际上也是主星盘本体的一部分。这意味着仙女座星系的螺旋盘面比早先估计的大三倍。这个证据显示仙女座星系盘的直径超过220,000光年,是一张巨大且延展的星盘。早先估计的直径是70,000至120,000光年。

仙女座星系的螺旋臂向外延伸出一连串的游离氢区,巴德描述成"一串珍珠"。它们看似紧紧的缠绕着,但在银河系却是被远远的分隔着。 矫正过的星系图很明确的显示有顺时针方向旋转的螺旋臂缠绕在螺旋星系内。从距离核心大约1,600光年处有两条连续的螺旋臂向外拖曳著,彼此间最近的距离大约是13,000光年。 

外形

使用欧洲太空总署的XMM-牛顿轨道天文台发现M31有数个X射线源。罗宾·巴纳德博士等人假设这些都是黑洞或中子星的候选者,将接踵而至的气体加热至数千万K所辐射出的X射线。中子星和假设中的黑洞,光谱是一样的,但是可以从质量上的差异区别出来。

仙女座星系大约有460个球状星团,这些星团中质量最大的,被命名为梅欧 II的,绰号是G1(Gloup one),是本星系群中最明亮的球状星团之一。它拥有数百万颗的恒星,亮度大约是半人马座ω-银河系内所知最明亮的球状星团的两倍。 G1有几种不同的星族,而且以一般的球状星团来看结构也太巨大了。因此,有些人认为G1是以前被M31吞噬的矮星系残骸。另一个巨大且明显的球状星团是位于西南旋臂东侧一半位置上的G76。

在2005年,天文学家在M31又发现一种全新型态的星团。新发现的星团拥有成千上万的恒星,在数量上与球状星团相似。不同的是体积非常庞大,直径达到数百光年,密度也低了数百倍;恒星之间的距离也远了许多。

卫星星系

如同的银河系,仙女座星系也有卫星星系,所知的已经有14个矮星系,最有名的、也是最容易观测到的卫星星系是椭圆星系M32和M110。

M110看来也曾经与M31互动过,并且天文学家在M31的星系晕中发现了从这个卫星星系被剥离的富含金属星的星流。  M110包含了一些灰尘很多的路径,暗示最近有恒星持续的形成。这在矮椭圆星系中是不寻常的现象,因为椭圆星系通常是缺乏尘埃和气体的。

在2006年,发现了9个星系沿着横越过仙女座星系核心的平面延伸著,而不是随意的散布在周围。这也许可以说明这些卫星星系有共同的起源。

星团核心

长久以来M31就被知道在核心有一个密集和紧凑的星团。在大望远镜下,感觉有许多模糊的星点环绕着核心。核心的亮度也远超过最亮的球状星团。

在1991年,Tod R. Lauer使用哈柏太空望远镜上的WFPC拍到了仙女座星系内核的影像。有两个相距1.5秒差距的核心,较亮的核被标示为P1,位置偏离了星系的中心;稍暗的标示为P2,位置在星系真正的中心上,被认为是拥有10M的黑洞。

随后地基的观测也证实了两个核心的存在,并且推测两著在相对的移动,其中一个是被M31吞噬,正在潮汐裂解中的小星系。包括M31在内,许多星系的核心,都是充满了相当狂野的、剧烈变动的的区域,并且经常都以有超重质量黑洞存在其中来解释。

Scott Tremaine提出了以下的说明来解释双核心: P1是在盘面上以异常轨道环绕中心黑洞的恒星投影。这异常的离心率使恒星长期逗留在轨道的远心点上,造成了恒星的集中。P2也包含了盘面上高热的、光谱A型恒星。在红色的滤光镜下,A型恒星是不明显的,但是在蓝色和紫外线下,它们会比主要的核心更为明亮,造成P2看上去比P1更为突出。

相关词条

相关搜索

其它词条