DNA测序

DNA测序

放射医学与防护名词
DNA测序(DNA sequencing,或译DNA定序)是指分析特定DNA片段的碱基序列,也就是腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤的(G)排列方式。快速的DNA测序方法的出现极大地推动了生物学和医学的研究和发现。RNA测序则通常将RNA提取后,反转录为DNA后使用DNA测序的方法进行测序。
    中文名:DNA测序 外文名: 所属分类: 英文名:DNA sequencing 释义:指分析特定DNA片段的碱基序列 性质:测定未知序列

定义

DNA测序是对特定DNA 片段的碱基序列进行分析的方法。即测定腺嘌呤(A)、胸腺嘧啶(T)、胞嘧啶(C)与鸟嘌呤的(G)排列方式。

测序目的

1、测定未知序列

2、确定重组DNA的方向与结构

3、对突变进行定位和鉴定

4、比较研究

发展历史

70年代末,WalterGilbert发明化学法、FrederickSanger发明双脱氧终止法手动测序,同位素标记;

80年代中期,出现自动测序仪(应用双脱氧终止法原理)、荧光代替同位素,计算机图象识别;

90年代中期,测序仪重大改进、集束化的毛细管电泳代替凝胶电泳

2001年完成人类基因组框架图。

国内现状

人类基因组计划、基因芯片、个性化分子诊断、生物云计算……这些在21世纪第一个十年里吸引无数眼球的热门词汇,都和一个产业颇有渊源——DNA测序。生物技术和信息技术在这片创意新天地里水乳交融,如果用一句诗来形容坐拥两大技术护航的DNA测序产业,那就是——天生丽质难自弃。

在业内人士眼里,DNA测序出身高贵,它破解基因密码(即碱基序列),将基因组学与IT技术相结合,发展出一门新兴学科——生物信息学。以它为代表的基因技术,颠覆了传统生物学技术,引领生命科学未来发展潮流。以它为代表的基因工程,在医疗健康、环境保护、新能源、新材料、现代农业等热门领域大显身手。

在业内人士眼里,DNA测序足够高科技,堪称“一项新技术衍生出一个新行业”的典范,在短时间内迅速成为国内外VC和PE的宠儿,发展速度之快以至于没有人能准确描绘出它十年后的发展蓝图。在日新月异的DNA测序技术面前,任何预测可能都显得保守。

高科技领域就是这样一个诞生传奇的地方。据《全球DNA测序行业商业模式与投资预测分析报告前瞻》调查,DNA测序已从一项令人高山仰止的前沿技术迅速普及为生命科学常规技术。DNA测序成本下降的速度几乎可与电脑芯片运算能力增强的速度匹敌——过去一个微生物全基因组DNA测序需要花费300-500万元,而现在它的成本只有30-50万元。DNA测序的发展不仅体现在成本的降低,更表现在高通量测序使得工作效率得到了大幅提高,这就为DNA测序产业化铺平了道路。

在DNA测序商业化的浪潮下,我国《生物产业发展“十二五”规划》提出完成10000种微生物、100种动植物基因组测序、发现约500个新的功能基因、转化应用5个以上有重大经济价值的基因或蛋白。按照每种微生物进行“基因组完成图”测序的费用为30-50万元来看,DNA测序带来的市场容量达千亿元,这还仅仅是DNA测序商业应用市场的冰山一角。

测序原理

化学修饰法

化学试剂处理末段DNA片段,造成碱基的特异性切割,产生一组具有各种不同长度的DNA链的反应混合物,经凝胶电泳分离。化学切割反应:包括碱基的修饰修饰的碱基从其糖环上转移出去在失去碱基的糖环处DNA断裂。

Sanger法

就是利用一种DNA聚合酶来延伸结合在待定序列模板上的引物。直到掺入一种链终止核苷酸为止。每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)。

由于ddNTP缺乏延伸所需要的3-OH基团,使延长的寡聚核苷酸选择性地在G、A、T或C处终止。终止点由反应中相应的双脱氧而定。每一种dNTPs和ddNTPs的相对浓度可以调整,使反应得到一组长几百至几千碱基的链终止产物。

它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,凝胶处理后可用X-光胶片放射自显影或非同位素标记进行检测。

用途

基础生物学研究中,和在众多的应用领域,如诊断,生物技术,法医生物学,生物系统学中,DNA序列知识已成为不可缺少的知识。具有现代的DNA测序技术的快速测序速度已经有助于达到测序完整的DNA序列,或多种类型的基因组测序和生命物种,包括人类基因组和其他许多动物,植物和微生物物种的完整DNA序列。

相关词条

相关搜索

其它词条