最小二乘法

最小二乘法

数学优化技术
最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。[1]
    中文名:最小二乘法 外文名: 别名: 英文名:he least square method 别 称:最小平方法 提出者:马里·勒让德 提出时间:1806年 应用学科:数学 适用领域:代数

历史

1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。

高斯使用的最小二乘法的方法发表于1809年他的着作《天体运动论》中。

法国科学家勒让德于1806年独立发明“最小二乘法”,但因不为世人所知而默默无闻。

勒让德曾与高斯为谁最早创立最小二乘法原理发生争执。

1829年,高斯提供了最小二乘法的优化效果强于其他方法的证明,因此被称为高斯-马尔可夫定理。(来自于wikipedia)

原理

在我们研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1.x2,y2...xm,ym);将这些数据描绘在x-y直角坐标系中,若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。

其中:a0、a1是任意实数

为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用计算值Yj(Yj=a0+a1X)(式1-1)的离差(Yi-Yj)的平方和

最小为“优化判据”。

把(式1-1)代入(式1-2)中得:

当最小时,可用函数φ对a0、a1求偏导数,令这两个偏导数等于零。

∑(a0+a1*Xi-Yi)=0(式1-4)

∑Xi(a0+a1*Xi-Yi)=0(式1-5)

亦即:

na0+(∑Xi)a1=∑Yi(式1-6)

(∑Xi)a0+(∑Xi^2)a1=∑(Xi*Yi)(式1-7)

得到的两个关于a0、a1为未知数的两个方程组,解这两个方程组得出:

a0=(∑Yi)/n-a1(∑Xi)/n(式1-8)

a1=[n∑(XiYi)-(∑Xi∑Yi)]/[n∑(Xi^2)-(∑Xi)^2)](式1-9)

这时把a0、a1代入(式1-1)中,此时的(式1-1)就是我们回归的一元线性方程即:数学模型。

在回归过程中,回归的关联式不可能全部通过每个回归数据点(x1,y1.x2,y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于1越好;“F”的绝对值越大越好;“S”越趋近于0越好。

R=[∑XiYi-m(∑Xi/m)(∑Yi/m)]/SQR{[∑Xi2-m(∑Xi/m)2][∑Yi2-m(∑Yi/m)2]}(式1-10)*

在(式1-10)中,m为样本容量,即实验次数;Xi、Yi分别为任意一组实验数据X、Y的数值。

公式

最小二乘法公式

注:以下“平”是指某参数的算数平均值。如:X平——x的算术平均值。

1、∑(X--X平)(Y--Y平)=

∑(XY--X平Y--XY平+X平Y平)=

∑XY--X平∑Y--Y平∑X+nX平Y平=

∑XY--nX平Y平--nX平Y平+nX平Y平=∑XY--nX平Y平;

2、∑(X--X平)^2=

∑(X^2--2XX平+X平^2)=

∑X^2--2nX平^2+nX平^2=∑X^2--nX平^2;

3、Y=kX+b

k=((XY)平--X平*Y平)/((X^2)平--(X平)^2),

=Y平--kX平;

X平=1/n∑Xi,

(XY)平=1/n∑XiYi;

拟合

对给定数据点{(Xi,Yi)}(i=0,1,…,m),在取定的函数类Φ中,求p(x)∈Φ,使误差的平方和E^2最小,E^2=∑[p(Xi)-Yi]^2。从几何意义上讲,就是寻求与给定点{(Xi,Yi)}(i=0,1,…,m)的距离平方和为最小的曲线y=p(x)。函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。

最小二乘法的矩阵形式

最小二乘法的矩阵形式为:

其中为的矩阵,为的列向量,为的列向量。如果(方程的个数大于未知量的个数),这个方程系统称为矛盾方程组(OverDeterminedSystem),如果(方程的个数小于未知量的个数),这个系统就是UnderDeterminedSystem。

正常来看,这个方程是没有解的,但在数值计算领域,我们通常是计算,解出其中的。比较直观的做法是求解,但通常比较低效。其中一种常见的解法是对进行QR分解(),其中是正交矩阵(OrthonormalMatrix),是上三角矩阵(UpperTriangularMatrix),则有用MATLAB命令可解得。

最小二乘法的Matlab实现

①一次函数线性拟合使用polyfit(x,y,1)

②多项式函数线性拟合使用polyfit(x,y,n),n为次数

拟合曲线

x=[0.5,1.0,1.5,2.0,2.5,3.0],

y=[1.75,2.45,3.81,4.80,7.00,8.60]。

解:MATLAB程序如下:

x=[0.5,1.0,1.5,2.0,2.5,3.0];

y=[1.75,2.45,3.81,4.80,7.00,8.60];

p=polyfit(x,y,2)

x1=0.5:0.5:3.0;

y1=polyval(p,x1);

plot(x,y,'*r',x1,y1,'-b')

计算结果为:

p=0.56140.82871.1560

即所得多项式为y=0.5614x^2+0.8287x+1.15560

③非线性函数使用

lsqcurvefit(fun,x0,x,y)

a=nlinfit(x,y,fun,b0)

最小二乘法在交通运输学中的运用

交通发生预测的目的是建立分区产生的交通量与分区土地利用、社会经济特征等变量之间的定量关系,推算规划年各分区所产生的交通量。因为一次出行有两个端点,所以我们要分别分析一个区生成的交通和吸引的交通。交通发生预测通常有两种方法:回归分析法和聚类分析法。

回归分析法是根据对因变量与一个或多个自变量的统计分析,建立因变量和自变量的关系,最简单的情况就是一元回归分析,一般式为:Y=α+βX式中Y是因变量,X是自变量,α和β是回归系数。若用上述公式预测小区的交通生成,则以下标i标记所有变量;如果用它研究分区交通吸引,则以下标j标记所有变量。而运用公式的过程中需要利用最小二乘法来求解,上述公式中的回归系数根据最小二乘法可得:

其中,式中的X拔是规划年的自变量值,Y拔是规划年分区交通生成(或吸引)预测值。

相关词条

相关搜索

其它词条