核动力

核动力

利用可控核反应来获取能量
核动力(英语:Nuclearpower,也称原子能)是利用可控核反应来获取能量,从而得到动力、热量和电能。产生核电的工厂被称作核电站,将核能转化为电能的装置包括反应堆和汽轮发电机组。核能在反应堆中被转化为热能,热能将水变为蒸汽推动汽轮发电机组发电。因为核辐射问题和现在人类还只能控制核裂变,所以核能尚未得到所有国家、民众的认可,在大部分的国家暂时未有大规模的利用。
    中文名:核动力 外文名:Nuclear power 别名:原子能 化学式: 分子量: CAS登录号: EINECS登录号: 熔点: 沸点: 水溶性: 密度: 外观: 闪点: 应用: 安全性描述: 危险性符号: 危险性描述: UN危险货物编号: CN危险货物编号: 原理:利用可控核反应来获取能量

应用

美国每年产生的核能居全世界首位,美国人消耗的电能中有20%来自于核能。如果按核能占总电能的百分比来看,法国则为全球第一。2006年的调查显示,核能满足了80%的法国电能需求。欧盟需要的30%的电能来自核反应。各国的核能政策均各有不同。

核能是一种储量充足并被广泛应用的能量来源,而且如果用它取代化石燃料来发电的话,温室效应也会减轻。国际间正在进行对于改善核能安全性的研究,科学家们同时还在研究可控核聚变和核能的更多用途,比如说制氢(氢能也是一种被广泛提倡的清洁能源),海水淡化和大面积供热。1979年的三哩岛核泄漏事故和1986年的切尔诺贝利核事故使美国放缓了建造核能发电厂的步伐。

后来,核能在经济与环境两方面的益处使联邦政府又开始重新考虑它。公众也对核能很感兴趣,不断飙升的油价,核能发电厂安全性的提高和符合京都议定书规定的低温室气体排放量使一些有影响的环境保护论者开始注意核能。有一些核反应堆已处于建造当中,几种新型核反应堆也在计划之中。

关于核能的利用一直存在着争议,因为那些放射性核废料会被无限期保存起来,这就有可能造成泄漏或爆炸,有些国家可能借用核能的名义来大量制造核武器。核能的拥护者说这些风险都是很小的,并且应用了更先进的科技的新型核反应堆会将风险进一步降低。他们还指出,与其它化石燃料发电厂相比,核能发电厂的安全记录反而更好,核能产生的放射性废料比燃烧煤产生的还少,并且核能可以持续获得。

而核能的反对者,包括了大部分主要的环境保护组织,认为核能是一种不经济,不合理且危险的能源(尤其是与可再生能源相比),而且他们对新技术能否减低成本和风险也存在着争议。有些人担心朝鲜及伊朗可能正在以民用核能的名义研制核武器。朝鲜已经承认拥有核武器,而伊朗则对此否认。

种类

现今正在运营的核反应堆可依裂变的方式区分为两大类,各类中又可依控制裂变的手段区分为数个子类别:

①核裂变反应堆通过受控制的核裂变来获取核能,所获核能以热量为形式从核燃料中释出。

现行核电站所用的全为核裂变反应堆,这也是本段的主述内容。核裂变反应堆的输出功率为可调。核裂变反应堆也可依世代分类,比如说第一、第二和第三代核反应堆。标准核反应堆都为压水式核反应堆(PWR)。

快中子式核反应堆和热中子式核反应堆的区别会在稍后讲到。总体来说,快中子式反应堆产生的核废料较少,其核废料的半衰期也大大短于其它型式反应堆所产生的核废料,但这种反应堆很难建造,运营成本也高。快中子式反应堆也可以当做增殖型核反应堆,而热中子式核反应堆一般不能为此。

A.压水式核反应堆(PWR)

这种反应堆完全以高压水来冷却并使中子减速(即使在温度极高时也是这样)。大部分正在运行的反应堆都属于这一类。尽管在三哩岛出事的反应堆就是这一种,一般仍认为这类反应堆最为安全可靠。这是一种热中子式核反应堆。中国大陆秦山核电站一期工程、大亚湾核电站和台湾核三厂的反应堆为此型。

B.沸水式反应堆(BWR)

这些反应堆也以轻水作为冷却剂和减速剂,但水压较前一种稍低。正因如此,在这种反应堆内部,水是可以沸腾的,所以这种反应堆的热效率较高,结构也更简单,而且可能更安全。其缺点为,沸水会升高水压,因此这些带有放射性的水可能突然泄漏出来,。这种反应堆也占了运行的反应堆的一大部分。这是一种热中子式核反应堆。台湾核一厂和核二厂两座发电厂的反应堆为此型。

C.压重水式核反应堆(PHWR)

这是由加拿大设计出来的一种反应堆,(也叫做CANDU),这种反应堆使用高压重水来进行冷却和减速。这种反应堆的核燃料不是装在单一压力舱中,而是装在几百个压力管道中。这种反应堆使用天然铀为核燃料,是一种热中子式核反应堆。这种反应堆可以在输出功率开到最大时添加核燃料,因此能高效利用核燃料(因为可作精确控制)。大部分压重水式反应堆都位于加拿大,有一些出售到阿根廷、中国、印度(未加入防止核武器扩散条约)、巴基斯坦(未加入防止核武器扩散条约)、罗马尼亚和韩国。印度也在它的第一次核试爆后运行了一些压重水式核反应堆(一般被称为“CANDU的变种”)。中国大陆秦山核电站三期工程的反应堆为此型。

D.石墨轻水型核反应堆(RBMK)

这是一种苏联的设计,它在输出电力的同时还产生钚。这种反应堆用水来冷却并用石墨来减速。RBMK型与压重水型在某些方面具有相同之处,即可以在运行中补充核燃料,并且使用的都是压力管。但是与压重水型不同的是,这种反应堆不稳定,并且体积太大,无法装置在外罩安全壳的建筑物里,这点很危险。RBMK型还有一些很重大的安全缺陷,尽管其中一些在切尔诺贝利核事故后被改正了。一般认为RBMK型是最危险的核反应堆型号之一。切尔诺贝利核电站拥有四台RBMK型反应堆。

E.气冷式反应堆和高级气冷式反应堆

这种反应堆使用石墨作为减速剂,并用二氧化碳作为冷却剂。其工作温度较压水式反应堆更高,因此热效率也更高。一部分正在运行的反应堆属于这一类,大部分位于英国。老式的核电站(也就是Magnox式)已经或即将关闭。但高级气冷式核反应堆还会继续运行10至20年。这是一种热中子式核反应堆。关闭这种核电站的费用很高,因其反应炉核心很大。

F.液态金属式快速增殖核反应堆(LMFBR)

这种反应堆使用液态金属作为冷却剂,而完全不用减速剂,并且在发电的同时生产出比消耗量更多的核燃料。这种反应堆在效率上很接近压水式反应堆,而且工作压力不需太高,因为液态金属即使在极高温下也不需加压。法国的超级凤凰核电站和美国的费米-I核电站用的都是这种反应堆。1995年,日本的“文殊”核电站发生液态钠泄漏,预计将会在2008年重新开始运行。这三个核电站都用到了液态钠。这是一种快速中子式反应堆而不是热中子式反应堆。液态金属式反应堆分为两种:

G.液态铅式反应堆

这种反应堆使用液态铅来作为冷却剂,铅不但是隔绝辐射的绝佳材料,还能承受很高的工作温度。还有,铅几乎不吸收中子,所以在冷却过程中损失的中子较少,冷却剂也不会变成带放射性。与钠不同的是,铅是惰性元素,所以发生事故的几率也较小,但是,应用如此大量的铅就不得不考虑毒性问题,而且清理起来也很麻烦。这种反应堆经常用的是铅铋共熔合金。在这种情况下,铋会产生一些小的放射性问题,因为它会吸收少量中子,而且也比铅更容易变得带放射性。

H.液态钠式反应堆

大部分液态金属式反应堆都属于这一种。钠很容易获得,而且还能防止腐蚀。但是,钠遇水即剧烈爆炸,所以使用时一定要小心。虽然这样,处理钠爆炸并不比处理压水式核反应堆中超高温轻水的泄漏麻烦到哪里去。

②放射性同位素温差发电机通过被动的衰变来获取热量。

一些放射性同位素温差发电机被用来驱动太空探测器(比如卡西尼-惠更斯号),苏联的一些灯塔,和某些心脏起搏器。这种发电机产生的热会随着时间逐渐减少,其热能通过温差电效应转换成电能。

工作原理

一般核电站的关键部分是:

核燃料

中子减速剂

冷却剂

控制棒

压力舱

反应炉中心紧急冷却系统

反应堆保护系统

蒸汽发生器(沸水式反应堆中没有这个)

安全壳建筑

水泵

涡轮机

发电机

冷凝器

一般的热电厂都有燃料供应来产生热,比如说天然气,煤或石油。对于核电厂来说,它需要的热来自于核反应堆中的核裂变。当一个相当大的可裂变原子核(一般为铀-235或钚-239)被一个中子轰击时,它便分裂为两个或更多个部分,同时释放出能量和中子,这个过程就叫做核裂变。原子核释放出的中子会继续轰击其它原子核。当这个链式反应被控制的时候,它释放出的能量便可用来烧水,产生出的水蒸气会驱动涡轮机,从而产生电能。需要记住的是,核爆炸中发生的是“不受控制的”链式反应,而核反应堆中的裂变速度无法达到核爆炸所需要的速度,这是因为商业用核燃料的浓度还不够高。

链式反应被一些能够吸收或减慢中子的材料控制着。在以铀为核燃料的反应堆当中,中子需要被减慢速度,因为当慢速中子轰击铀-235原子核时是更容易发生裂变的。轻水反应堆使用普通水来减慢中子并进行冷却。当水的温度升高到一定程度时,它便达到了工作温度,此时它的密度会降低,因此没被它吸收的少量中子会被减得足够慢,然后去引发新的裂变。负反馈将裂变速度保持在一定水平。

循环

核反应堆只是核燃料循环中的一部分。整个循环从核燃料的开采开始。一般来说,铀矿不是露天开采的条带矿,就是原地开采的过滤型矿。在任意一种情况下,铀矿石都会被提取出来,并被转为稳定且紧密的形式(例如黄铀饼),然后被送到处理工厂。在这里,黄铀饼会被转化为六氟化铀,之后会被提纯。在这时,包含了0.7%以上铀-235的提纯铀会被加工成各种形状大小的燃料棒。被送到核电站后,这些燃料棒会在反应堆中呆上大约3年,在这3年中,它们会消耗自身包含的铀的3%,在这之后,它们会被送到乏燃料水池,在这里,核裂变中产生的一些半衰期短的同位素会衰变掉。在这里呆上大约5年后,这些核燃料的放射性会降低到安全范围之内,之后就会被装进干的储藏容器永久储藏,或被送到再处理工厂进行再处理。

来源

铀是一种常见的化学元素,陆地上和海洋中的每个地方都存在着铀。它就跟锡一样常见,储量比金高500倍。大部分种类的岩石和土壤都包含着铀,尽管浓度极低。比较经济的铀储藏地的铀浓度至少为0.1%。以花费速度来算,地球上可被提取的铀还可用50年。将铀的价格提高一倍对核电站的运行成本不会有什么影响,但可以使地球上可被提取的铀能持续使用几百年。在这种情况下,将铀的价格提高一倍会将核电站的运行成本提高5%。但是,如果将天然气的价格提高一倍,那么天然气的供应成本会提高60%。将煤的价格提高一倍会将煤的供应成本提高30%。

铀的提纯会产生出许多吨贫铀(DU),它包含了铀-238和大多数铀-235。铀-238有几种商业上的应用,比如说飞机制造,辐射防护,制造子弹和装甲,因为它具有比铅更高的的密度。有人担心那些过度接触铀-238的人会得辐射病,这些人包括坦克乘员和在有大量贫铀存在的地区居住的居民。

轻水反应堆远远没有能充分利用核燃料,这造成了浪费。更有效的反应堆或再处理技术将会减少核废料的数量,并且能更好地利用资源。

固体废料

核电站产生的废料太多,一台大型核反应堆每年会产生3立方米(25-30吨)的核废料。这些核废料中主要包含没有发生裂变的铀和大量锕系元素中的超铀元素(大部分是钚和锔)。3%的核废料是裂变产物。核废料中的长半衰期成分为锕系元素(铀,钚和锔),短半衰期成分为裂变产物。

核废料具有强放射性,并且需要特别小心地控制。刚从核反应堆出来的核废料可在不到一分钟的时间内致死。但是,核废料的放射性会随着时间减少。40年后,它的放射性与刚从反应堆出来时相比,已经减少了99.9%,尽管它的放射性还是很危险。

核废料的储藏和处理是一个巨大的挑战。由于核废料具有放射性,它必须存放在具有辐射防护的水池中(乏燃料池),在这之后它一般会被送到干燥的地窖或防辐射的干燥容器中进行储藏,直到它的辐射量降低到可以进行进一步处理的程度。由于核燃料种类的不同,这个过程通常要持续几年到几十年的时间。美国大多数的核废料都在短期的储藏地点,人们正在讨论建造永久储藏地点。2003年,美国的核反应堆已经制造了49000吨核废料。美国犹加山的地下储藏室被提议成为永久的储藏地点。根据美国环境保护总署的计算,大约经过10000年后,核废料的放射性就会降低到安全范围之内。参看核燃料循环。

核废料的数量可以通过几种方法来减少,其中核燃料再处理效果最为显着。即使这样,剩余的核废料如果不包含锕系元素,还会持续300年保持强放射性,如果包含锕系元素,则会持续几千年保持强放射性。即使将核废料中的锕系元素全部除去,并使用快速增殖反应堆通过嬗变将一些半衰期长的非锕系元素也除去,核废料还是要在一百至几百年内与外界隔绝,所以这是个长期的问题。次临界反应堆和核聚变反应堆也可以减少核废料需要被储藏的时间。由于科技在飞速地发展,处理核废料的最好方法是否为地下填埋已经出现了争议。核废料在将来可能就是一种有用的资源。

再处理

再处理可以回收用过的核燃料中95%的铀和钚,并将它们转化为新的混合氧化物燃料。这也同时减少了核废料的长期放射性,因为经过再处理后,剩余核废料中主要就是半衰期短的裂变产物,并且它的体积也减少了90%。民用核燃料产生的废料的回收已经在英国,法国和(以前)俄罗斯大规模应用,中国也即将应用这项技术,印度也可能应用,日本应用此项技术的规模也在扩展中。伊朗已经宣布成功进行了核废料的再处理,这就完善了它的核燃料循环,但是同时也招致了美国和国际原子能机构的批评。与其它国家不同的是,美国在一段时间前是禁止核废料再处理的;尽管这个政策已经被废除,但是美国大部分使用后的核燃料都仍然在被当作废料处理。

经济因素

核电站的建造通常需要大量资金,但是它的运行和维护成本却相当低(包括了核废料再处理或进行填埋的全部费用)。

核能的反对者说,建造并运行核电站的费用加上核废料再处理和关闭核电站的费用已经超出了在环境上获得的利益。而核能的支持者说,核能是唯一一种将废料处理的费用考虑到运行成本中的能源,化石燃料的价格相当低是因为化石燃料工业从不考虑废料处理的问题。

英国皇家工程学院在2004年发表了一份关于英国核电站运营成本的报告。这份报告尤其关注的是间歇性能源与更可靠的能源之间成本的比较。报告说明,风能的价格为核能价格的两倍。在碳价包含税的前提下,使用煤,核能和天然气发的电,价格为0.022-0.026英镑/千瓦时,使用气化煤的价格为0.032英镑/千瓦时。当碳税增加(最多为0.025英镑)时,煤发电的价格就接近了向陆风发电(包含备用能源)的价格,为0.054英镑/千瓦时,向海风发电的价格为0.072英镑/千瓦时。

核电的价格为0.023英镑/千瓦时。这个数字包括了核燃料再处理的费用。

资金

总体上来说,建造一座核电站的费用要比建造向外输出同样多功率的以煤或天然气为燃料的发电厂的费用高很多。煤的价格远远高于核燃料的价格,而天然气又远比煤贵,所以说,如果不考虑建造费用的话,烧天然气来发电是最贵的。但是,在建造核电站上投入资金的多少直接决定了核电站输出电能的多少。建造核电站需要的资金占了总运营成本的70%(假设折现率为10%)。

许多国家中的电力市场自由化使核能变得不如从前有吸引力了。在此之前,一个垄断性质的供电商可以保证供电直到几十年以后的将来。私人供电公司面临的是短期的合同和潜在的竞争,所以它们喜欢低建造成本的发电厂,这样就可以在短期内收回成本。

在许多国家中,建造核电站所需的执照,监管和认证经常会拖延核电站的竣工时间并增加建造成本。三哩岛核泄漏事故后,美国政府颁布了一系列关于核电站的新标准。以煤和天然气作燃料的发电厂不受这些标准限制,因为它们在建造时没有利润。但是,选址,获得执照和建造这三步适用于所有将要建造的发电厂,这些步骤使得更新而更安全的设计对能源公司来说更有吸引力。

在日本和法国,建造核电站所需的获得执照和认证的程序很简洁,这也就使建造费用和时间大大地缩短了。在法国,政府使用一种与认证新型飞机相似的程序来认证一种核反应堆。这就是说,法国政府不去认证单个的反应堆,而是直接认可一大类反应堆,这就减少了新核电站的认证时间。美国法律也允许这种一次认证一类的做法,并且这种做法很快就要被应用。

为了鼓励核能的发展,美国能源部(DOE)开展了核能2010年计划,在这个计划中,能源部会鼓励一些感兴趣的团体去采用法国式的认证程序,并且还会给予因认证拖延了时间而增加了建造成本的六家新核电站25%至50%的建造成本作为补贴。

补贴

核能的批评者说,在核能的支持者计算核能的费用时,他们经常忽略了政府给予核能工业的大量补助,这些补助被用于帮助核能工业的研究。但是,其它能源工业也收到了补助。化石燃料工业交的税更少,并且不用为它们排放的温室气体支付赔偿金。在许多国家中,可再生能源也在生产的过程中收到了补贴,并且在税务方面还受到了特殊照顾。

核能的研究与发展(R&D)收到的补助要远远大于可再生能源和化石燃料R&D收到的补助多。但是,大部分这种现象都发生在日本和法国,在其它国家,可再生能源收到的补助最多。在美国,每年用于核裂变研究的资金已从1980年的21.79亿美元减少到了2000年的3500万美元。但是,为了重组整个核能工业,接下来建造的六个美国核反应堆将会收到与可再生能源同样多的补助,并且它们还会收到由于等待认证而损失的钱的一部分作为补偿。

根据美国能源部的说法,美国境内的核事故保险收到了普莱斯-安德森核工业补偿法的补助。2005年7月,美国国会又将这台法律进行了扩展。在英国,1965年颁布的核设施建造法规定,核反应堆的事故由此反应堆的执照拥有者负责任。关于核损害民事责任的维也纳公约确定了国际间关于核事故责任的处理方法。

其它

核电站在无其它能源可用的地区最有竞争力,最为显着的例子就是法国,它几乎没有化石燃料储量。加拿大安大略省已经将它的水利资源运用到了极限,并且也几乎没有化石燃料储藏,所以在那里也有一些核电站。印度也在建造新的核电站。相反地,英国贸易与工业部不允许在英国建造新的核电站,因为与化石燃料相比,核能的单位成本太高。但是,英国政府的首席科学顾问戴维金说英国有必要再建造一个核电站。中国计划建的核电站是最多的,因为它的经济在飞速发展,并且国内也有许多能源计划。

大多数新型的的天然气发电厂都被用作用电高峰时期的备用发电厂。比天然气发电厂规模大的核电厂和煤电厂无法快速改变输出功率,这些电厂的角色只是在平常时期供电。因为平常时期的用电涨幅不像高峰时期那么大。一些新型反应堆,尤其是球床反应堆,是专为高峰时期用电而设计的。

在世界上任何一个地方建造核电站,无论这个核电站是旧式还是新式,都会遇到被当地居民反对的问题。经过三哩岛和切尔诺贝利这两个事故后,只有很少数的城市会欢迎一个新的核反应堆,核处理工厂,核燃料运输路线或试验性核设施。许多城市都颁布了法规,禁止建造任何核设施。但是,美国境内一些已有核设施的地方却在争抢着要更多核设施。核能的反对者总是以切尔诺贝利的事故为借口反对美国政府建造新的核反应堆。而事实是,美国60年前的核反应堆都比切尔诺贝利的反应堆安全。当被问到是否能在自己家后院建造一个切尔诺贝利式的反应堆时,大多数的人都会像预料中一样反应。如果在清洁而可靠的球床式反应堆和冒着黑烟破坏环境的以煤或天然气作燃料的热电厂之间做出选择的话,大多数的人都会做出聪明的决定。

担心

事故

核能的反对者说,核反应堆的一个主要缺点就是它面临着核事故和恐怖分子袭击的威胁,这样的话大量平民都会受到辐射线的照射。

核能的支持者说,在一个设计得很好的反应堆中,核泄漏的风险是非常小的,因为它的安全系统经过了精心的设计,并且核工业将核事故看得很严重,对它的关心程度远比煤电厂和水电厂高。在大面积的范围内造成了灾难的切尔诺贝利核电站,实际上是结合了很危险的RBMK反应堆,安全壳建筑物的缺乏,不精心的保养和安全规章的缺失的这样一种产物。与西方使用的几乎所有核反应堆不同的是,RBMK型反应堆的空隙率很高,这意味着一个零部件的失灵就会使反应堆产生越来越多的热和射线,直到反应堆破裂为止。即使是在三哩岛核泄漏事故这个苏联之外最严重的民用核设施的事故中,压力容器和安全壳建筑物也没有破裂,只是核反应堆的核心熔毁,向自然界释放出了非常少量的射线(比生物圈放出的射线都要少)。

科学家们正在尝试着改变核反应堆的设计,他们希望能通过这样来减少核裂变反应堆出事故的风险;自动化和被动安全式的反应堆也正在研究中。未来可能出现的核聚变反应堆在理论上出事的风险是非常小的,因为反应堆中的核燃料只够反应约一分钟时间,但是核裂变反应堆中储藏的是够用一年的核燃料。次临界反应堆中从来不储藏任何核燃料。

核能的反对者说他们担心核废料得不到足够的防护,在恐怖分子袭击时,这些核废料可能会泄漏出来。他们引用了1999年发生在俄罗斯的一件事:几名工人在贩卖5克放射性物质时被抓获,他们还引用了1993年同样发生在俄罗斯的一件事:警方抓获了正在贩卖4.5克浓缩铀的工人。从那以后,联合国就开始努力让世界各大国改善核设施的安全防护,从而阻止放射性物质落入恐怖分子之手。

有时为了保护运输核材料的货船会出动几千名警察。其它能源的有关设施,比如说水电厂和天然气运输船,更容易受到事故和袭击的威胁。但是,核能的支持者说核废料已经得到了很好的防护,并且他们还说在全世界范围内没有一起民用核设施的事故与核废料有关。他们还指出,美国核管理委员会和其它一些机构对核反应堆和核废料储藏设施强度的大量测试表明,它们可以承受与911袭击事件规模大致相等的恐怖袭击。用完的核燃料通常位于核电站的“保护区”或用后核燃料的海运容器;偷取它来制作炸弹是极难的。用后的核燃料释放出的射线足以快速地将任何接近它的恐怖分子杀死。

根据美国核管理委员会的研究,美国境内已经有20个州要求居住在核反应堆周围10英里内的居民在家中储藏碘化钾,这在严重的核事故发生时(虽然可能性非常小)是非常有用的。

影响健康

人类接触到的大多数辐射都属于自然界的背景辐射。背景辐射之外的那一部分,绝大多数都与医疗有关。一些复盖了美国,加拿大和欧洲的大规模研究没有发现任何表明居住在核反应堆周围的居民癌症死亡率升高了的证据。举例来说,1990年,美国国立卫生研究院中的美国国家癌症研究所(NCI)宣称,在对16种癌症的死亡率进行了一项大规模研究后,他们认为居住在美国62座核电站周围的居民癌症死亡率并不比其它地方高。这项研究同时发现,在新建了一座核电站后,当地儿童的白血病死亡率也没有增长。这项研究是美国国家癌症研究所进行的规模最大的对癌症的研究,它一共在核电站周围的居民中调查了900000个因癌症而死的人。

除了切尔诺贝利核事故的直接影响外,在乌克兰和白俄罗斯的一些地方,土壤也含有放射性。由于这个原因,一个疏散区在切尔诺贝利核电站周围被划定了。

在2006年3月,安全检查发现,美国境内的一些核电站一直有受了氚污染的水泄漏到土壤里。(被核电站排放出来的水会通过废水管道流进河里,这时的废水已经达到了排放标准。但是,通过向土壤中排放,只有很少量的氚进入了饮用水供应系统。)伊利诺伊州的司法部长说,她要以六处这样的泄漏为名控告Exelon公司,她要公司向周边居民提供干净的自来水,尽管公司外的每个水井中的水都没有超标。在进行了调查后,美国核管理委员会声称“这次检查确认了公众的健康和安全没有受到有害影响,并且公众接触的照射剂量与美国核管理委员会的标准相比是非常低的。”但是,美国核管理委员会主席说:“他们需要修复它。”

核武器

核能的反对者指出,核技术经常是军民两用性质的,民用核计划中用到的材料和技术都可以用于发展核武器。能够防止核扩散是核反应堆的主要设计指标之一。

在大多数国家中,军用和民用的核技术经常与该国的核能力一起被提及。比如说,在美国,能源部的首要目标是“增强美国的公民,经济和能源的安全性;为了达到此目标,还要鼓励科学上和技术上的创新;并且消除公民对于核武器的恐惧。”

大部分核反应堆中的浓缩铀的浓度对于制造核弹来说太低。大多数核反应堆使用的是浓度为4%的浓缩铀;原子弹小男孩用的是80%的浓缩铀;虽然低浓度的浓缩铀也可以用来制造原子弹,但是浓度的下降会使炸弹的最小尺寸变得出奇的大,这是很不切实际的。但是,用来为发电制造浓缩铀的工厂和技术也可以制造核弹所需的高纯度浓缩铀。

另外,核反应堆在工作时制造出的钚,如果在再处理时进行浓缩的话,也是可以用来制造核弹的。虽然在一般核反应堆的核燃料循环中制造出来的钚中,钚-240的低浓度使它没有成为制造武器的理想材料,但是还是可以由它制造出有用的武器。如果一个核反应堆所在的核燃料循环非常短,那么具有武器级浓度的钚就可以被制造出来。但是,在许多反应堆中进行这种活动是很难掩人耳目的,因为用民用核反应堆来制造核武器需要经常关闭核反应堆来添加核燃料,而这在卫星图片上是清晰可见的。

大部分人都相信印度和巴基斯坦在它们的核能计划中使用了CANDU核反应堆来为核武器制造可裂变材料,但是,这不是完全正确的。加拿大(提供了40MW的试验型核反应堆)和美国(提供了21吨重水)都向印度提供了开展核武器计划所需要的技术。由于国际间并没有规定一国该怎样使用从他国得到的核技术,因此印度可以用这些技术来制造核武器。巴基斯坦被相信在一个自主的浓缩计划中为它的核武器制造出了裂变材料。

为了预防核武器的扩散,国际原子能机构在1968年通过并实施了防止核武器扩散条约(NPT),条约规定签约国对于核技术必须采取保护措施。签约国被要求向国际原子能机构报告它们拥有的核材料的种类和位置。签约国还同意,为了能进入国际核市场,它们允许国际原子能机构派出调查员和监督员来确认它们关于核材料的报告,并且对它们的核材料进行检查。

有些国家以前没有签署这项条约,并且有能力使用国际间援助的核技术(经常为民用)来发展核武器(印度,巴基斯坦,以色列和南非)。南非后来也成为了防止核武器扩散条约的签约国,它是世界上唯一已知发展了核武器并被证实将其销毁了的国家。在那些签署了这项条约并通过海运收到了一些零星的核材料的国家中,许多国家已经宣称或已被指责尝试着使用应为民用的核电站来发展武器,比如说伊朗和朝鲜。

一些新的技术,比如说SSTAR,可能通过密封的核反应堆,有限的独立式核燃料供应和对于人为干涉的管制来降低核武器扩散的风险。

在扩展核能的用途时,一个可能的障碍是铀矿石的储量限度,这在建造和运行增殖核反应堆时是必需的。但是,以消耗速度来算,地球上还有足够的铀—“总的说来,能供我们开采的铀储量还能用几百(最高1000)年,即使使用标准的反应堆。”在卡特总统的领导班子对核燃料再处理下了禁令之后,美国境内的增殖反应堆全部被关闭了,对核燃料再处理下禁令是因为在再处理的过程中,武器级核材料扩散的风险是无法为人所接受的。

一些核能的支持者对于核武器扩散的风险可能是国际间预防“不民主”的发展中国家获得任何核技术的原因之一表示同意,但是他们说“民主”的发达国家没有任何理由关闭位于它们境内的核电站,尤其因为“民主国家”之间“不会挑起战争”。

核能的支持者还说,核能与其它一些能源相似,能持续以同样的价格持续地供电,还不会让国与国之间争抢能源,而国际间对于能源的争抢可能会导致战争。

2006年2月,美国宣布了它的一项新措施,即全球核能源合作计划。在这项计划中,国际间会合作使用一种能够防止核扩散的核燃料再处理方法,同时也使发展中国家能够发展核能计划。

环境影响

空气

无放射性的水蒸气是核电站在运行时释放出来的主要排泄物。核裂变会产生一些气体,比如说碘-131和氙-133。这些气体主要会被封在燃料棒中,但是在假定的事故中,会有少量气体被释放到冷却剂中。化学物品控制系统会将放射性气体隔离,这些气体需要被存放很长时间(半衰期的几倍),直到它们变的安全。碘-131和氙-133的半衰期分别为8.0天和5.2天,因此它们需要被储藏好几个月的时间。

核能发电不直接产生二氧化硫,氮氧化物,汞或其它与化石燃料的燃烧有关的污染物。(仅在美国,每年就有许多人因为燃烧化石燃料产生的污染物而死去)。它也不直接产生二氧化碳,这使一些环境保护者通过支持对核能的依靠来减少温室气体的排泄(温室气体造成了全球变暖)。

为了生产核燃料,矿石需要被采集并被处理。这个过程不是直接使用柴油或汽油机,就是使用电网提供的电,而这些电可能是通过燃烧化石燃料产生的。核燃料循环分析评价这个过程消耗的能量(以今天的混合能源来算)并进行计算,它要计算的是在核电站的整个寿命中,减少的二氧化碳排放量(与核电站供电多少有关)与排放出的二氧化碳数量(与核电站的建造和核燃料的获得有关)之比。

一些循环分析表明,核电站每发一千瓦时的电与风能每发一千瓦时的电,排放量相似。2001-2005年的一个循环分析发现,根据核燃料中铀浓度的不同,核电站每发一千瓦时的电排放的二氧化碳的量为天然气发电厂每发一千瓦时的电排放的二氧化碳的量的20%到120%。2003年,世界核材料协会对这个循环分析进行了批评,并且在2006年进行了一个自己的循环分析,推翻了它的结论。

2006年,英国政府的可持续发展委员会总结说,如果英国的核电能力再增加一倍,那么到了2035年,英国全国的二氧化碳排放量将会减少8%。英国的目标是在2050年时将温室气体的排放量减少60%。与2006年一样的是,英国政府也公布了自己的研究结果。

废热

核反应堆需要冷却,典型的是用水来冷却(有时不是直接的)。使用水来将能量从一个热源带走,需要一个冷源,这个过程叫做兰金循环(Rankinecycle)。能通过兰金循环来转化为能量的热是有限度的。多余的热量需要当作废热来排放掉,这时就需要冷却水了。河流是最常用的冷却水来源,也是废热的排放地点。废水的温度必须受到限制,否则会将河中的鱼杀死;生物圈中比一般水温度高的热水是一个潜在的长期隐患。在大多数新的核电站中,这个问题被冷却塔解决了。废水对于所有的传统供电厂,包括煤,石油和天然气供电厂都是一个问题,因为它们都靠着兰金循环来产生能量。这四种供电厂只是在热源上有所不同。

对于限制废气温度的需求也会限制住发电能力。在极热的天气中,用电量是最高的,但是这时核电站的发电量却可能会下降,因为核电站中冷却水的温度会变得更高,这样它的冷却效率就会降低。在改进核电站的设计时,工程师们会考虑到这点,因为冷却能力的增加会让建造资金也增加。

装置

利用原子核反应堆中核燃料裂变反应产生的热能转变成动力的整套设备。它包括核反应堆、动力产生系统以及安全保障和控制系统。由于核燃料有强烈的辐射性。因此,核动力装置的安全保障是个极为重要的问题.一般,从设计到运行,各国都有严格的质量保证和控制标准。

集团名单

美国核协会(美国)

Areva(阿海珐)(法国)

加拿大原子能公司(加拿大)

美国能源部(美国)

埃及原子能管理局

法国电力公司(法国)

EnergoAtom(乌克兰)

欧洲原子能共同体(欧洲)

印度原子能委员会(印度)

国际原子能机构(IAEA)

哈萨克斯坦国家原子能公司(哈萨克斯坦)

俄罗斯原子能部(俄罗斯)

阿根廷原子能委员会(阿根廷)

美国核能研究所(美国)

巴基斯坦原子能委员会(巴基斯坦)

英国原子能管理局(英国)

世界核协会(国际)

中国原子能工业有限公司(中国)

中国原子能科学研究院(中国)

中国国家原子能机构(中国)

背景

自从地球上第一次出现人类以来,人类为了求得自身的生存和发展,一直在为扩大能源,提高自己驾驭大自然的能力而斗争。为此,人们曾经利用过大自然所给予的各种动力资源,从最初依靠自己的体力,发展到利用畜力、水力、风力和木材、煤炭、石油、天然气等等。

但由于人口的不断增加(大约每秒钟增加一人),生活对能源的需求仍将不断扩大。按保守的估计,即保持原有的耗能水平,那么煤的开采只能维持200年,而石油和天然气则更短,为50年左右。为此,世界上许多国家,特别是那些动力资源贫乏的那些国家,都在寻找开发新能源的途径。而1939年巨大的核裂变能的发现,立即引起了各国能源专家的重视。

中国现状

根据世界核协会的报道,中国有5座电站正在建设,6座列入计划,19座正在筹划。到2020年,中国的国家核动力自力更生开发领导集团希望投入运转的装备能力达到40GW和正在建设的装备能力在18GW。就是说在今后15年新建30座核电站,这将使中国在核动力增长方面居世界首位。

5月19日下午,位于江苏省连云港市的田湾核电站7、8号机组和辽宁省葫芦岛市的徐大堡核电站3、4号机组正式开工。

业内人士表示,此次核电项目开工对于改善地方能源结构,优化能源布局,保证电网安全及能源供应安全,促进地方高质量发展意义重大。同时,将为我国实现碳达峰、碳中和目标做出重要贡献,并为进一步深化中俄新时代全面战略协作伙伴关系提供强劲动力。

中俄能源合作的又一硕果

“田湾、徐大堡4台核电机组如期开工建设,体现了中俄在高端装备制造和科技创新领域合作的高水平,在中俄核能合作的历史进程中具有标志性意义。”国家能源局局长章建华指出。

“核能合作是中俄传统优先合作领域,也是中俄新时代全面战略协作伙伴关系的重要组成部分。”章建华表示,中俄核电大项目合作始于上世纪九十年代。田湾核电站1至4号机组都是中俄能源合作成果。

核能合作是中俄能源合作的一个缩影。2020年,中俄双方克服疫情影响,实现了能源贸易大幅增长。

“从能源全品种来看,俄罗斯继续居我国第一大能源贸易伙伴。中俄两国在重大项目合作、工程服务合作、技术标准合作以及能源产业金融一体化合作等方面均取得了积极成效。”章建华说,事实证明,中俄能源合作经得起考验,富有韧性和潜力。章建华对中俄能源的合作前景充满信心。

今年是《中俄睦邻友好合作条约》签署20周年。中国上合组织研究中心秘书长邓浩说,此次合作项目的开工有利于进一步促进中俄双方的经贸合作,增强双方贸易互补性,夯实双方关系的物质基础

推动我国核能事业发展

“中俄核能合作是全球核电发展低潮中的一抹亮色。”国务院发展研究中心资源与环境政策研究所能源政策研究室主任洪涛表示,从产业方面看,该项目的落地为保持中国核电建造产业链提供了稳定性,也有利于提振全球核能国际合作的信心。

洪涛表示,一次批量新建4台核电机组,从全球看也是单位时间内最大规模、投资密度很高的项目,这也证明中国是全球核电最大的潜在市场。在当前国际形势下,中国在探索和开启新的核能国际合作形式。中俄此次核能合作,就是新形势下的新实践。

专家认为,核电可实现长期稳定、安全可靠的大规模能源供给。在我国东部沿海地区新建先进核电,可以增加电力需求高负荷地区的低碳电力供应,缓解周边地区的清洁供电压力。

同时,核电具有科技含量高、投资规模大、生态效益好、产业带动和经济拉动作用强等显著优势。核电产业链条较长,核电建设与运行对多个关联产业形成了直接和间接拉动,在促进地方和区域经济增长、拉动装备制造业与服务业发展、创造就业等方面贡献明显。

以徐大堡核电项目为例,项目对辽宁装备制造产业链贡献将超过400亿元;仅项目2台机组建设期间,将创造数万个就业岗位;2台机组投运后,将为东北振兴战略深入推进和辽宁省经济社会发展注入强大动力。

能源低碳转型迈出的一大步

4台机组建成投产后,年发电量将达到376亿千瓦时,相当于每年减少二氧化碳排放3068万吨。

“核能具有清洁高效的特点,将为中国实现碳达峰、碳中和目标提供有力支撑。双方共谋能源绿色发展,充分体现了负责任大国的有力担当。合力推动全球绿色低碳转型,中俄核能合作前景广阔。”章建华说。

为做好碳达峰、碳中和相关工作,今年政府工作报告提出在确保安全的前提下积极有序发展核电。

专家表示,中国已经明确了碳达峰、碳中和目标,4台机组开工也表明中国积极应对气候变化、坚定绿色发展的决心,并且在一步步朝着降碳的目标迈进,为应对气候变化做出中国贡献。

相关词条

相关搜索

其它词条