生物物理學

生物物理學

生命科學分支學科
生物物理學(Biological Physics)是物理學與生物學相結合的一門交叉學科,是生命科學和物理的重要分支學科和領域之一。生物物理學是應用物理學的概念和方法研究生物各層次結構與功能的關系、生命活動的物理、物理化學過程和物質在生命活動過程中表現的物理特性的生物學分支學科。生物物理學旨在闡明生物在一定的空間、時間内有關物質、能量與信息的運動規律。[1]
  • 外文名:Biological Physics
  • 名稱:生物物理學
  • 建立時間:17世紀
  • 研究範圍:物理學與生物學
  • 分支學科:生命科學
  • 定義:物理學與生物學相結合的交叉學科

發展簡史

17世紀A.考伯提到發光生物螢火蟲。

1786年L.伽伐尼研究了肌肉的靜電性質。

1796年T.揚利用光的波動學說、色覺理論研究了眼的幾何光學性質及心髒的液體動力學作用。

H.von亥姆霍茲将能量守恒定律應用于生物系統,認為物質世界包括生命在内都可以歸結為運動。他研究了肌肉收縮時熱量的産生和神經脈沖的傳導速度。E.H.杜布瓦-雷蒙德第一個制造出電流表并用以研究肌肉神經,1848年發現了休止電位及動作電位。

1895年W.C.倫琴發現了X射線後,幾乎立即應用到醫學實踐。

1899年K.皮爾遜在他寫的《科學的文法》一書中首次提到:“作為物理定律的特異事例來研究生物現象的生物物理和生物物理學……”,并列舉了當時研究的血液流體動力學、神經傳導的電現象、表面張力和膜電位、發光與生物功能、以及機械應激、彈性、粘度、硬度與生物結構的關系等問題。

1910年A.V.希爾把電技術應用于神經生物學,并顯示了神經纖維傳遞信息的特征是一連串勻速的電脈沖,脈沖是由膜内外電位差引起。

19世紀顯微鏡的應用導緻細胞學說的創立。以後從簡單顯微鏡發展出紫外、暗視野、熒光等多種特殊用途的顯微鏡。電子顯微鏡的發展則提供了生物超微結構的更多信息。

研究内容

20世紀20年代開始陸續發現生物分子具有鐵電、壓電、半導體、液晶态等性質,生命體系在不同層次上的電磁特性,以及生物界普遍存在的射頻通訊方式。但許多物理特性在生命活動過程中的意義和作用,則遠沒有搞清楚。比如幾乎所有生物,體内的蛋白質都是由L型氨基酸組成,而組成核酸的核糖又總是D型。為什麼有這樣的旋光選擇性,與生命起源和生物進化有何關系,就有待探讨。

1980年發現兩個人工合成DNA片段呈左旋雙螺旋,人們普遍希望了解自然界有無左旋DNA存在。

1981年人們在兩段左旋片段中插入一段A-T對,整個螺旋立即向右旋轉,能否說明自然界不存在左旋DNA呢?這種特定的旋光性對生命活動的意義現仍無答案。根據生物的物理特性可以測出各種物理參數。但是由于生命物質比較複雜,在不同的環境條件下參量也要改變。已有的測試手段往往不适用,尚待技術上的突破,才有可能進一步闡明生命的奧秘。

活躍在生物體内的基本粒子(研究到電子和質子)的研究,也是探索生命活動的物理及物理化學過程的一個主體部分。生物都是含水的,研究水溶液中電子的行為,對了解生命活動的理化過程極為重要。人們已經發現了生物的質子态、質子非定域化和質子隧道效應等現象,因此需進一步開展量子生物學的研究,探索這些基本粒子在活體内的行為。光合作用中葉綠素最初吸收光子隻在10-15秒瞬間完成,視覺過程和高能電離輻射最初始的能量吸收也都是瞬間完成的,這些能量在體内最初的去向和行為,從吸收到物理化學過程的出現,究竟發生了什麼物理作用,這就需要既靈敏又快速的測試技術。生命活動過程中過去不被注意的組分,包括甲基、酰基這樣的基團,水分子和金屬離子,它們恰恰活躍地作用于大分子之間,在生物大分子相互作用時,不僅是搭橋牽線以引發大分子的構象變化,而且它們自身就參與結構和功能變化。如甲基化與神經傳導、生物信号傳遞、基因開關等均有密切關系。酰化作用、金屬離子如鈣、鎂等的作用也早被注意。在膜通道研究過程中,發現了鈣和鈣調素的作用。生物體内的遊離子(自由水)可以由氫鍵締合成水化層,它不是結合水,但對生物結構有關并參與生命活動。生物水既是質子供體,也是質子受體,因此水在生物體内決不是簡單的介質。蛋白質在56℃左右變性,但我們能在70℃以上的溫泉中找到生物;人工培養的細胞保存在-190℃,解凍後細胞仍與正常态一樣,這些生物體内水的結構狀态是怎樣?如果能把這些極端狀态的水的結構與性質闡明,将有助于對生命規律的理解。

生物在億萬年進化過程中,最終選擇了膜作為最基本的結構形式。從通透、識别、通訊,到能量轉換等各種生命活動幾乎都在膜上進行,膜不僅提供場所,它本身也積極參與了活動(見生物膜)。

發展應用

對生物大分子及大分子體系結構分析的有:

①近紅外顯微鏡。反差大,生物材料無需染色即可觀察。由于近紅外能量極小,因此基本上不損傷生物樣品,對光敏系統如暗适應的感受器細胞的觀察就十分有利。有人預計有可能用來觀察生活狀态的活樣品;

②閃光X射線顯微鏡。每個脈沖為60毫秒,打在聚甲基異丁烯酸甲酯薄膜窗口,由于所射出的是軟X射線(23~44埃)正是水透明區,因此提供了可以進行水濕樣品研究的條件。同步輻射中的軟X射線對生物學研究将帶來極大的好處;

③光散射顯微鏡。能測定細胞的大小與形狀,絕對靈敏度高達0.01~0.1微米,并且不怕雜質幹擾,不需要樣品制備直接提供信息;

④利用吸收超聲能量後引起溫度瞬間變化來進行超聲回聲圖象術進行診斷,用聲學顯微鏡顯示人染色體,樣品在-188℃液氮中由透鏡記錄到超聲信号再轉換成像;

⑤低角X射線衍射研究活細胞。用钕玻璃激光光源50~600ps脈沖,聚集在100微米有機玻璃靶上。由于主要來自15Cl離子的4.45埃激光源,因此有利于活細胞觀察;

⑥核磁共振。研究生物大分子結合重金屬離子後結構變化,二價陽離子在膜結構與功能關系中的作用,鹽菌紫膜光照後内膜酸堿度變化等等。除了常用的13C、31P、1H等外還用19F測定酶與底物的相互作用。用2D測定膜中的分子動力學。另一方面,二維核磁已可用來測定溶液中大分子内氫原子之間的距離,核磁成像作為無損傷成像技術,将遠優于超聲的應用,在某些方面優于X射線斷層成像技術。此外如利用全反射衰減紅外光譜觀察水溶液中膜蛋白及紅細胞結構;拉曼差光譜測定肌紅蛋白三級及四級結構;X射線散射研究溶液構像測定原子間短程漲落狀态,如蛋白質α-螺旋510埃區域的動态變化;利用磁圓二色研究生物分子可以和熒光偏振、線性圓二色互補測定高粘度下或非熒光分子樣品。有時一種技術的出現将使生物物理問題的研究大大改觀。如X射線衍射技術導緻了分子生物物理學的出現。因此雖然技術本身并不一定就代表生物物理,但它對生物物理學的發展是非常關鍵的。

意義

農業方面

為防止環境污染,取代農藥和化肥除考慮生物途徑(主要是微生物)外,更重要的是尋找作物生長的内在規律,根據作物本身的物理或物理化學規律,來控制作物生長和能量的合理利用。例如中國利用線粒體互補方法來揭示雜交品種是否有雜種優勢,這就是利用科學規律提出節省時間的育種方法。有些中國科學家提出線粒體中電子傳遞途徑的改變和調節有可能是多種方式的。這就為使更多的C3型植物能轉化到代謝更有效的C4型開辟了道路。提高光合作用的效率關鍵之一是如何控制暗反應中關鍵酶的活力;用物理方法暫時性的抑制酶活力顯然要比化學方法有利得多。細胞利用環境中飽和和不飽和脂肪酸與溫度有關。在15~20℃時利用油酸,而在20~25℃時則主要利用亞油酸,從而提供了不同溫度條件下控制作物能量轉換途徑來提高作物的營養價值。70年代末全球耗地為1.5×109公頃土地,其中鹽堿地占4×108公頃。能否利用某些好鹽菌來改良土壤,尤其是具有視紫紅質的好鹽菌,借助它能将光能直接轉換成化學能,是值得考慮的。輻射育種、激光育種由于沒有掌握生物物理規律,工作盲目性較大,急待改進,以期獲得更好效果。

醫學方面

X射線斷層照相(CT)、超聲、核磁成象能精确地進行腫瘤定位等。電子成像,如利用同位素标記的脫氧葡萄糖,可以清晰地顯示出在休息、學習、聽音樂、邊學習邊聽音樂等情況下腦活動的不同狀态。表明腦在不同情況下代謝活動是完全不同的。這就是神經性障礙的病患者的理想診斷方法。人工髒器或假肢等領域,如果不能首先從生物體引出固有信号,然後使信号轉換,再進行模拟是無法完成的。

工業方面

為實現工業改造中高靈敏度條件下小型化自動化,生物原型(模闆)是取之不盡的源泉。生物是個十分複雜的化工廠,無需加溫加壓即以無比短暫的速度,全部自動化地合成與分解。幾乎沒有三廢需要處理。生物又是最精密的電子工廠,廠裡零部件之小、靈敏度、精确度之高無與倫比。不僅全部都是自動控制,而且代償性強。例如螳螂的測速絕技──在0.05秒内測準掠過它眼前小蟲的大小、方向與飛行速度──的裝置隻是它的一對大複眼和頸部的本體感受器。生物物理學把原型加以研究,然後進行數學模拟和電子模拟,先後制成了電子蛙眼跟蹤器──跟蹤移動目标、水母風暴預報裝置、高清晰度的電視(仿鲎眼側抑制原理)等。人們已開始探索以分子為元件的計算機的可能性。

一方面物理及物理化學技術的應用促進了生物物理學的發展;另一方面技術在應用于生物對象時必須有所改進。比如最早電子順磁共振波譜儀(ESR)應用于生物材料,首先碰到含水、恒溫等問題。一般研究活物質的技術都要求滿足:低能量、無損傷、小樣品、短時間、最迫近生活狀态等條件。這些條件難度都較高,因此,生物物理學對技術的發展也有很大的促進。生物物理學是研究活物質的物理學。盡管生命是自然界的高級運動形式,也仍然是自然界3個量(質量、能量和信息)綜合運動的表現。隻是在生理體内這種運動變化既複雜又迅速,而且随着生物物質結構的複雜化,能量利用愈趨精密,信息量愈來愈大。雖然難度很大,但從另一方面看,研究活物質的物理規律,不僅能進一步闡明生物的本質,更重要的是能使人們對自然界整個物質運動規律的認識達到新的高度。

定義

生物物理學的定義是生物物理學領域幾乎每一本教科書都無法回答的問題。許多課本中對什麼是生物物理學幾乎都隻能含糊其詞的而沒有給出正面的回答:生物物理學是那麼一個領域沒有明确的内容範圍;生物物理學還不是一個成熟學科;它的主要内容還不定型;生物物理學隻是個别生物物理學家按照他們自己的設想來規定的,等等。因此與其去讨論他的定義或者是強調它的定義,還不如用讨論物理科學與生物科學之間的關系來明确生物物理學的概念。

任務

生物物理學的不斷發展和完善,一定會極大地促進生命科學的發展,并将帶來對于生命現象的本質新的突破。二十一世紀是生命科學的世紀,更是學科交叉、科學走向統一的世紀。新的世紀留給生物物理學的任務有:

⑴發掘非平衡開放系統特性的主要規律,也就是找出生命的熱力學基礎。

⑵從理論上解釋進化和個體發育的現象。

⑶解釋自身調節和自我複制的現象(自組織現象)。

⑷從原子、分子水平上揭露生物過程的本質也就是找到活躍在細胞内的蛋白質、核酸及其他物質的結構和生物功能的聯系;此外,還要在研究生命體在更高的超分子水平上、在細胞的水平上及在構成細胞的細胞器的水平上的物理現象。當然,這些都需要化學的幫助與支持。

⑸設計出研究生物功能物質及由這類物質構成的超分子結構的物理方法和物理化學方法,并對利用這種方法所得到的結果提供理論解釋。

⑹對神經脈沖的發生和傳播、肌肉收縮、感覺器官對外部信号的接收及光合作用等高度複雜的生理現象,提供物理的解釋。

⑺解釋怎樣由物質形成了意識。

研究領域

生物物理學研究Biophysics是一本關注生物物理學領域最新進展的國際中文期刊,由漢斯出版社發行。主要刊登生物物理學領域最新技術及成果展示的相關學術論文。支持思想創新、學術創新,倡導科學,繁榮學術,集學術性、思想性為一體,旨在為了給世界範圍内的科學家、學者、科研人員提供一個傳播、分享和讨論生物物理學領域内不同方向問題與發展的交流平台。

研究領域:

生物物理學

生物信息論與生物控制論

理論生物物理學

生物聲學與聲生物物理學

生物光學與光生物物理學

生物電磁學

生物能量學

低溫生物物理學

分子生物物理學與結構生物學

空間生物物理學

相關詞條

相關搜索

其它詞條