线粒体

线粒体

一种细胞器
线粒体(mitochondrion)是细胞中制造能量的结构,科学界也给线粒体起了一个别名叫做“power house”,即细胞的发电厂。一个细胞内含有线粒体的数目可以从几百个到数千个不等,越活跃的细胞含有的线粒体数目越多,如时刻跳动的心脏细胞和经常思考问题的大脑细胞含有线粒体的数目最大,皮肤细胞含有线粒体的数目比较少。线粒体或粒体线(mitochondrion),是一种存在于大多数真核细胞中的由两层膜包被的细胞器,直径在0.5到10微米左右。除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。这种细胞器拥有自身的遗传物质和遗传体系,但因其基因组大小有限,所以线粒体是一种半自主细胞器。线粒体是细胞内氧化磷酸化和合成三磷酸腺苷(ATP)的主要场所,为细胞的活动提供了能量,所以有“细胞动力工厂”之称。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。
    中文名:线粒体 拉丁学名: 别名: 界: 门: 亚门: 纲: 亚纲: 目: 亚目: 科: 亚科: 族: 属: 亚属: 种: 亚种: 分布区域:大多数真核细胞 英文名:mitochondrion 直径:0.5-10微米 作用:为细胞的各种生命活动提供能量

概述

线粒体(mitochondrion)是细胞中制造能量的结构,科学界也给线粒体起了一个别名叫做“power house”,即细胞的发电厂。一个细胞内含有线粒体的数目可以从十几个到数百个不等,越活跃的细胞含有的线粒体数目越多,如时刻跳动的心脏细胞和经常思考问题的大脑细胞含有线粒体的数目最大,皮肤细胞含有线粒体的数目比较少。

科学家发现农民皮肤细胞的线粒体因常年在室外劳动受到损伤的程度远远高于其他室内职业者,线粒体受到损伤,细胞就会缺乏能量而死亡。我们的面部常年暴露在外,时时刻刻都在经受风吹雨打和各种污染颗粒的侵袭,因此面部细胞经常是因为过度的磨难而早夭。

线粒体是1850年发现的,1898年命名。线粒体由两层膜包被,外膜平滑,内膜向内折叠形成嵴,两层膜之间有腔,线粒体中央是基质。基质内含有与三羧酸循环所需的全部酶类,内膜上具有呼吸链酶系及ATP酶复合体。线粒体是细胞内氧化磷酸化和形成ATP的主要场所,有细胞"动力工厂"(powerplant)之称。另外,线粒体有自身的DNA和遗传体系,但线粒体基因组的基因数量有限,因此,线粒体只是一种半自主性的细胞器。

在多数细胞中,线粒体均匀分布在整个细胞质中,但在某些些细胞中,线粒体的分布是不均一的,有时线粒体聚集在细胞质的边缘。在细胞质中,线粒体常常集中在代谢活跃的区域,因为这些区域需要较多的ATP,如肌细胞的肌纤维中有很多线粒体。另外,在精细胞、鞭毛、纤毛和肾小管细胞的基部都是线粒体分布较多的地方。线粒体除了较多分布在需要ATP的区域外,也较为集中的分布在有较多氧化反应底物的区域,如脂肪滴,因为脂肪滴中有许多要被氧化的脂肪。 

形态与分布

线粒体一般呈粒状或杆状,但因生物种类和生理状态而异,可呈环形,哑铃形、线状、分杈状或其它形状。主要化学成分是蛋白质和脂类,其中蛋白质占线粒体干重的65%-70%,脂类占25%-30%。一般直径0.5~1μm,长1.5~3.0μm,在胰脏外分泌细胞中可长达10~20μm,称巨线粒体。数目一般数百到数千个,植物因有叶绿体的缘故,线粒体数目相对较少;肝细胞约1300个线粒体,占细胞体积的20%;单细胞鞭毛藻仅1个,酵母细胞具有一个大型分支的线粒体,巨大变形中达50万个;许多哺乳动物成熟的红细胞中无线粒体。通常结合在维管上,分布在细胞功能旺盛的区域。如在肝细胞中呈均匀分布,在肾细胞中靠近微血管,呈平行或栅状排列,肠表皮细胞中呈两极性分布,集中在顶端和基部,在精子中分布在鞭毛中区。线粒体在细胞质中可以向功能旺盛的区域迁移,微管是其导轨,由马达蛋白提供动力。

超微结构

线粒体由内外两层膜封闭,包括外膜、内膜、膜间隙和基质四个功能区隔。在肝细胞线粒体中各功能区隔蛋白质的含量依次为:基质67%,内膜21%,外8%膜,膜间隙4%。

外膜

(out membrane)含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5kDa以下的分子通过,1kDa以下的分子可自由通过。标志酶为单胺氧化酶。

内膜

(inner membrane)含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统。如:丙酮酸和焦磷酸是利用H 梯度协同运输。线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用。内膜的标志酶为细胞色素c氧化酶。

膜间隙

(intermembrane space)是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。

基质

(matrix)为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。基质具有一套完整的转录和翻译体系。包括线粒体DNA(mtDNA),70S型核糖体,tRNA 、rRNA、DNA聚合酶、氨基酸活化酶等。基质中还含有纤维丝和电子密度很大的致密颗粒状物质,内含Ca 、Mg 、Zn 等离子

研究历史

线粒体的研究是从19世纪50年代末开始的。 

1857年,瑞士解剖学家及生理学家阿尔伯特·冯·科立克在肌肉细胞中发现了颗粒状结构。另外的一些科学家在其他细胞中也发现了同样的结构,证实了科立克的发现。德国病理学家及组织学家理查德·阿尔特曼将这些颗粒命名为“原生粒”(bioblast)并于1886年发明了一种鉴别这些颗粒的染色法。阿尔特曼猜测这些颗粒可能是共生于细胞内的独立生活的细菌。 

1898年,德国科学家卡尔·本达因这些结构时而呈线状时而呈颗粒状,所以用希腊语中“线”和“颗粒”对应的两个词——“mitos”和“chondros”——组成“mitochondrion”来为这种结构命名,这个名称被沿用至今。一年后,美国化学家莱昂诺尔·米歇利斯开发出用具有还原性的健那绿染液为线粒体染色的方法,并推断线粒体参与某些氧化反应。这一方法于1900年公布,并由美国细胞学家埃德蒙·文森特·考德里推广。德国生物化学家奥托·海因里希·沃伯格成功完成线粒体的粗提取且分离得到一些催化与氧有关的反应的呼吸酶,并提出这些酶能被氰化物(如氢氰酸)抑制的猜想。

英国生物学家大卫·基林在1923年至1933年这十年间对线粒体内的氧化还原链(redox chain)的物质基础进行探索,辨别出反应中的电子载体——细胞色素。 

沃伯格于1931年因“发现呼吸酶的性质及作用方式”被授予诺贝尔生理学或医学奖。

美国弗吉尼亚大学最新一项研究表明,动植物细胞中的线粒体其实是寄生细菌,早期寄生细菌可以对动物和植物提供能量,在细胞中作为能量寄生虫存在,对寄居体十分有益。新一代DNA序列技术解码18种细菌基因组,这些细菌是线粒体的近亲生物。

起源学说

对于线粒体的起源有两种假说,分别为内共生学说与非内共生学说

内共生学说

该学说认为线粒体起源于被另一个细胞吞噬的线粒体祖先——原线粒体——一种能进行三羧酸循环和电子传递的革兰氏阴性菌。这种好氧细菌是变形菌门下的一个分支,与立克次氏体有密切关系。原线粒体被吞噬后,并没有被消化,而是与宿主细胞形成了共生关系——寄主可以从宿主处获得更多营养,而宿主则可使用寄主产生的能量——这种关系增加了细胞的竞争力,使其可以适应更多的生存环境。在长期对寄主和宿主都有利的互利共生中,原线粒体逐渐演变形成了线粒体 ,使宿主细胞中进行的糖酵解和原线粒体中进行的三羧酸循环和氧化磷酸化成功耦合。有研究认为,这种共生关系大约发生在17亿年以前,与进化趋异产生真核生物和古细菌的时期几乎相同。但线粒体与真核生物细胞核出现的先后关系仍存在争议。

现已发现支持内共生学说的证据包括 :n遗传信息转移:近期的分子生物学和生物信息学的研究发现真核细胞的细胞核中存在可能属于呼吸细菌或蓝细菌的遗传信息,说明最初的呼吸细菌和蓝细菌的大部分基因组在漫长的共进化过程中发生了向细胞核的转移。n线粒体基因组与细菌基因组具有明显的相似性:包括1)线粒体拥有自己DNA,其形状与细菌的环状DNA类似,无组蛋白结合;2)碱基比例、核苷酸序列、基因结构特征等方面相似,不含5mC;3)线粒体具有自身的DNA聚合酶及RNA聚合酶,能进行独立的复制与转录;4)其mRNA、rRNA的沉降系数与细菌的相似。n线粒体具备独立、完整的蛋白质合成系统:与真核细胞的蛋白质合成系统相比,线粒体蛋白质合成的多数特征与细菌蛋白质合成系统更相似,包括1)蛋白质合成从N-甲酰甲硫氨酸开始,而真核细胞从甲硫氨酸开始;2)线粒体的核糖体小于真核生物的80S核糖体;3)线粒体、叶绿体、原核生物中存在5SrRNA,而不少真核生物的核糖体中存在5.8SrRNA;4)线粒体中的蛋白质合成因子具有原核生物核糖体的识别特异性,但不能识别细胞质核糖体;5)线粒体mRNA与线粒体核糖体形成多核糖体;6)线粒体、叶绿体上的蛋白质合成可被氯霉素、四环素所抑制,而抑制真核生物蛋白质合成的放线菌酮则对他们无抑制作用;7)线粒体的RNA聚合酶可被原核细胞RNA聚合酶抑制剂利福霉素所抑制,但不被真核细胞RNA聚合酶抑制剂放线菌素D所抑制等。n线粒体分裂方式与细菌相似:线粒体及叶绿体均以缢裂的方式分裂增殖,类似于细菌。n线粒体的膜特性:线粒体外膜与真核细胞内膜相似,线粒体内膜与细菌质膜相似;线粒体内膜的蛋白质/脂质的比例远大于外膜,与细菌相似。n其他特征:线粒体的磷脂成分、呼吸类型和Cyt c的初级结构均与反硝化副球菌或紫色非硫光合细菌非常接近,暗示线粒体的祖先可能是这两种菌的一种。n遗传密码比较:线粒体的遗传密码与变形菌门细菌的遗传密码更为相似;n不足之处:n从进化角度,如何解释在代谢上明显占优势的共生体反而将大量的遗传信息转移到宿主细胞中?n不能解释细胞核是如何进化来的,即原核细胞如何演化为真核细胞?n线粒体和叶绿体的基因组中存在内含子,而真细菌原核生物基因组中不存在内含子,如果同意内共生起源学说的观点,那么线粒体和叶绿体基因组中的内含子从何发生?

非内共生学说

非内共生学说又称为“细胞分化学说”,认为线粒体的发生是由细胞膜或内质网膜等生物膜系统中的膜结构演变而来的。非内共生学说有几种模型,主流的模型认为在细胞进化的最初阶段,原核细胞基因组复制后并不伴有典型的无丝分裂,而是拟核附近的细胞膜内陷形成双层膜,将其中一个基因组包围、隔离,进而发生细胞分裂。未分裂出来的子细胞则缓慢演化为细胞核、线粒体和叶绿体等高度特化的细胞结构。n不足之处:n实验证据不多n无法解释为何线粒体、叶绿体与细菌在DNA分子结构和蛋白质合成性能上有那么多相似之处n对线粒体和叶绿体的DNA酶、RNA酶和核糖体的来源也很难解释。n真核细胞的细胞核能否起源于细菌的核区?

增殖

线粒体的增殖是通过已有的线粒体的分裂,有以下几种形式:

1、间壁分离,分裂时先由内膜向中心皱褶,将线粒体分类两个,常见于鼠肝和植物产生组织中

2、收缩后分离,分裂时通过线粒体中部缢缩并向两端不断拉长然后分裂为两个,见于蕨类和酵母线粒体中。

3、出芽,见于酵母和藓类植物,线粒体出现小芽,脱落后长大,发育为线粒体。

特性

线粒体是对各种损伤最为敏感的细胞器之一。在细胞损伤时最常见的病理改变可概括为线粒体数量、大小和结构的改变:

1、数量的改变 线粒体的平均寿命约为10天。衰亡的线粒体可通过保留的线粒体直接分裂为二予以补充。在病理状态下,线粒体的增生实际上是对慢性非特异性细胞损伤的适应性反应或细胞功能升高的表现。例如心瓣膜病时的心肌线粒体、周围血液循环障碍伴间歇性跛行时的骨骼肌线粒体的呈增生现象。

线粒体数量减少则见于急性细胞损伤时线粒体崩解或自溶的情况下,持续约15分钟。慢性损伤时由于线粒体逐渐增生,故一般不见线粒体减少(甚至反而增多)。此外,线粒体的减少也是细胞未成熟和(或)去分化的表现。

2、大小改变细胞损伤时最常见的改变为线粒体肿大。根据线粒体的受累部位可分为基质型肿胀和嵴型肿胀二种类型,而以前者为常见。基质型肿胀时线粒体变大变圆,基质变浅、嵴变短变少甚至消失。在极度肿胀时,线粒体可转化为小空泡状结构。此型肿胀为细胞水肿的部分改变。光学显微镜下所谓的浊肿细胞中所见的细颗粒即肿大的线粒体。嵴型肿较少见,此时的肿胀局限于嵴内隙,使扁平的嵴变成烧瓶状乃至空泡状,而基质则更显得致密。嵴型肿胀一般为可复性,但当膜的损伤加重时,可经过混合型而过渡为基质型。

线粒体为对损伤极为敏感的细胞器,其肿胀可由多种损伤因子引起,其中最常见的为缺氧;此外,微生物毒素、各种毒物、射线以及渗透压改变等亦可引起。但轻度肿大有时可能为其功能升高的表现,较明显的肿胀则恒为细胞受损的表现。但只要损伤不过重、损伤因子的作用不过长,肿胀仍可恢复。

线粒体的增大有时是器官功能负荷增加引起的适应性肥大,此时线粒体的数量也常增多,例如见于器官肥大时。反之,器官萎缩时,线粒体则缩小、变少。

3、结构的改变 线粒体嵴是能量代谢的明显指征,但嵴的增多未必均伴有呼吸链酶的增加。嵴的膜和酶平行增多反映细胞的功能负荷加重,为一种适应状态的表现;反之,如嵴的膜和酶的增多不相平行,则是胞浆适应功能障碍的表现,此时细胞功能并不升高。

在急性细胞损伤时(大多为中毒或缺氧),线粒体的嵴被破坏;慢性亚致死性细胞损伤或营养缺乏时,线粒体的蛋白合成受障,以致线粒体几乎不再能形成新的嵴。

根据细胞损伤的种类和性质,可在线粒体基质或嵴内形成病理性包含物。这些包含物有的呈晶形或副晶形(可能由蛋白构成),如在线粒体性肌病或进行性肌营养不良时所见,有的呈无定形的电子致密物,常见于细胞趋于坏死时,乃线粒体成分崩解的产物(脂质和蛋白质),被视为线粒体不可复性损伤的表现。线粒体损伤的另一种常见改变为髓鞘样层状结构的形成,这是线粒体膜损伤的结果。

衰亡或受损的线粒体,最终由细胞的自噬过程加以处理并最后被溶酶体酶所降解消化 。

功能

能量转化

 线粒体是真核生物进行氧化代谢的部位,是糖类、脂肪和氨基酸最终氧化释放能量的场所。线粒体负责的最终氧化的共同途径是三羧酸循环与氧化磷酸化,分别对应有氧呼吸的第二、三阶段。细胞质基质中完成的糖酵解和在线粒体基质中完成的三羧酸循环在会产还原型烟酰胺腺嘌呤二核苷酸(reduced nicotinarnide adenine dinucleotide,NADH)和还原型黄素腺嘌呤二核苷酸(reduced flavin adenosine dinucleotide,FADH2)等高能分子,而氧化磷酸化这一步骤的作用则是利用这些物质还原氧气释放能量合成ATP。在有氧呼吸过程中,1分子葡萄糖经过糖酵解、三羧酸循环和氧化磷酸化将能量释放后,可产生30-32分子ATP(考虑到将NADH运入线粒体可能需消耗2分子ATP)。如果细胞所在环境缺氧,则会转而进行无氧呼吸。此时,糖酵解产生的丙酮酸便不再进入线粒体内的三羧酸循环,而是继续在细胞质基质中反应(被NADH还原成乙醇或乳酸等发酵产物),但不产生ATP。所以在无氧呼吸过程中,1分子葡萄糖只能在第一阶段产生2分子ATP。

三羧酸循环

糖酵解中生成的每分子丙酮酸会被主动运输转运穿过线粒体膜。进入线粒体基质后,丙酮酸会被氧化,并与辅酶A结合生成CO2、还原型辅酶Ⅰ和乙酰辅酶A。乙酰辅酶A是三羧酸循环(也称为“柠檬酸循环”或“Krebs循环”)的初级底物。参与该循环的酶除位于线粒体内膜的琥珀酸脱氢酶外都游离于线粒体基质中。在三羧酸循环中,每分子乙酰辅酶A被氧化的同时会产生起始电子传递链的还原型辅因子(包括3分子NADH和1分子FADH2)以及1分子三磷酸鸟苷(GTP)。

氧化磷酸化

NADH和FADH2等具有还原性的分子(在细胞质基质中的还原当量可从由逆向转运蛋白构成的苹果酸-天冬氨酸穿梭系统或通过磷酸甘油穿梭作用进入电子传递链)在电子传递链里面经过几步反应最终将氧气还原并释放能量,其中一部分能量用于生成ATP,其余则作为热能散失。在线粒体内膜上的酶复合物(NADH-泛醌还原酶、泛醌-细胞色素c还原酶、细胞色素c氧化酶)利用过程中释放的能量将质子逆浓度梯度泵入线粒体膜间隙。虽然这一过程是高效的,但仍有少量电子会过早地还原氧气,形成超氧化物等活性氧(ROS),这些物质能引起氧化应激反应使线粒体性能发生衰退。 

当质子被泵入线粒体膜间隙后,线粒体内膜两侧便建立起了电化学梯度,质子就会有顺浓度梯度扩散的趋势。质子唯一的扩散通道是ATP合酶(呼吸链复合物V)。当质子通过复合物从膜间隙回到线粒体基质时,电势能被ATP合酶用于将ADP和磷酸合成ATP。这个过程被称为“化学渗透”,是一种协助扩散。彼得·米切尔就因为提出了这一假说而获得了1978年诺贝尔奖。1997年诺贝尔奖获得者保罗·博耶和约翰·瓦克阐明了ATP合酶的机制。

储存钙离子

线粒体可以储存钙离子,可以和内质网、细胞外基质等结构协同作用,从而控制细胞中的钙离子浓度的动态平衡。线粒体迅速吸收钙离子的能力使其成为细胞中钙离子的缓冲区。在线粒体内膜膜电位的驱动下,钙离子可由存在于线粒体内膜中的单向运送体输送进入线粒体基质;排出线粒体基质时则需要钠-钙交换蛋白的辅助或通过钙诱导钙释放(calcium-induced-calcium-release,CICR)机制。在钙离子释放时会引起伴随着较大膜电位变化的“钙波”(calcium wave),能激活某些第二信使系统蛋白,协调诸如突触中神经递质的释放及内分泌细胞中激素的分泌。线粒体也参与细胞凋亡时的钙离子信号转导。

其他功能

除了合成ATP为细胞提供能量等主要功能外,线粒体还承担了许多其他生理功能。 

·调节膜电位并控制细胞程序性死亡:当线粒体内膜与外膜接触位点处生成了由己糖激酶(细胞质基质蛋白)、外周苯并二氮受体和电压依赖阴离子通道(线粒体外膜蛋白)、肌酸激酶(线粒体膜间隙蛋白)、ADP-ATP载体(线粒体内膜蛋白)和亲环蛋白D(线粒体基质蛋白)等多种蛋白质组成的通透性转变孔道(PT孔道)后,会使线粒体内膜通透性提高,引起线粒体跨膜电位的耗散,从而导致细胞凋亡。线粒体膜通透性增加也能使诱导凋亡因子(AIF)等分子释放进入细胞质基质,破坏细胞结构。 

·细胞增殖与细胞代谢的调控; 

·合成胆固醇及某些血红素。 

线粒体的某些功能只有在特定的组织细胞中才能展现。例如,只有肝脏细胞中的线粒体才具有对氨气(蛋白质代谢过程中产生的废物)造成的毒害解毒的功能

病理

线粒体是对各种损伤最为敏感的细胞器之一。在细胞损伤时最常见的病理改变可概括为线粒体数量、大小和结构的改变:

数量的改变

线粒体的平均寿命约为10天。衰亡的线粒体可通过保留的线粒体直接分裂为二予以补充。在病理状态下,线粒体的增生实际上是对慢性非特异性细胞损伤的适应性反应或细胞功能升高的表现。例如心瓣膜病时的心肌线粒体、周围血液循环障碍伴间歇性跛行时的骨骼肌线粒体的呈增生现象。 

线粒体数量减少则见于急性细胞损伤时线粒体崩解或自溶的情况下,持续约15分钟。慢性损伤时由于线粒体逐渐增生,故一般不见线粒体减少(甚至反而增多)。此外,线粒体的减少也是细胞未成熟和(或)去分化的表现。

大小改变

细胞损伤时最常见的改变为线粒体肿大。根据线粒体的受累部位可分为基质型肿胀和嵴型肿胀二种类型,而以前者为常见。基质型肿胀时线粒体变大变圆,基质变浅、嵴变短变少甚至消失(图1-9)。在极度肿胀时,线粒体可转化为小空泡状结构。此型肿胀为细胞水肿的部分改变。光学显微镜下所谓的浊肿细胞中所见的细颗粒即肿大的线粒体。嵴型肿较少见,此时的肿胀局限于嵴内隙,使扁平的嵴变成烧瓶状乃至空泡状,而基质则更显得致密。嵴型肿胀一般为可复性,但当膜的损伤加重时,可经过混合型而过渡为基质型。 

线粒体为对损伤极为敏感的细胞器,其肿胀可由多种损伤因子引起,其中最常见的为缺氧;此外,微生物毒素、各种毒物、射线以及渗透压改变等亦可引起。但轻度肿大有时可能为其功能升高的表现,较明显的肿胀则恒为细胞受损的表现。但只要损伤不过重、损伤因子的作用不过长,肿胀仍可恢复。 

线粒体的增大有时是器官功能负荷增加引起的适应性肥大,此时线粒体的数量也常增多,例如见于器官肥大时。反之,器官萎缩时,线粒体则缩小、变少。

结构的改变

线粒体嵴是能量代谢的明显指征,但嵴的增多未必均伴有呼吸链酶的增加。嵴的膜和酶平行增多反映细胞的功能负荷加重,为一种适应状态的表现;反之,如嵴的膜和酶的增多不相平行,则是胞浆适应功能障碍的表现,此时细胞功能并不升高。 

在急性细胞损伤时(大多为中毒或缺氧),线粒体的嵴被破坏;慢性亚致死性细胞损伤或营养缺乏时,线粒体的蛋白合成受障,以致线粒体几乎不再能形成新的嵴。 

根据细胞损伤的种类和性质,可在线粒体基质或嵴内形成病理性包含物。这些包含物有的呈晶形或副晶形(可能由蛋白构成),如在线粒体性肌病或进行性肌营养不良时所见,有的呈无定形的电子致密物,常见于细胞趋于坏死时,乃线粒体成分崩解的产物(脂质和蛋白质),被视为线粒体不可复性损伤的表现。线粒体损伤的另一种常见改变为髓鞘样层状结构的形成,这是线粒体膜损伤的结果。 

衰亡或受损的线粒体,最终由细胞的自噬过程加以处理并最后被溶酶体酶所降解消化。 

线粒体与衰老

线粒体是直接利用氧气制造能量的部位,90%以上吸入体内的氧气被线粒体消耗掉。但是,氧是个“双刃剑”,一方面生物体利用氧分子制造能量,另一方面氧分子在被利用的过程中会产生极活泼的中间体(活性氧自由基)伤害生物体造成氧毒性。生物体就是在不断地与氧毒性进行斗争中求得生存和发展的,氧毒性的存在是生物体衰老的最原初的原因。线粒体利用氧分子的同时也不断受到氧毒性的伤害,线粒体损伤超过一定限度,细胞就会衰老死亡。生物体总是不断有新的细胞取代衰老的细胞以维持生命的延续,这就是细胞的新陈代谢。

线粒体与美容

保持线粒体完好无损就是保持了细胞的活力,拥有健康的肌肤细胞就是留住了青春。这个道理只有细细的品味,才能从中受益。皮肤细胞的新陈代谢就是自然的皮肤更新过程,新陈代谢旺盛细胞更新速率就快,总有一些新生的细胞出现在脸上,才有美丽青春的魅力。

线粒体与疾病

人类线粒体出现问题会导致线粒体病,线粒体病是一大类遗传代谢病,线粒体病主要包括:母系遗传Leigh综合征,线粒体肌病,多系统疾病、心肌病、进行性眼外肌麻痹,Leer遗传性视神经病,线粒体肌病,肌病,糖尿病和耳聋、共济失调舞蹈病、细胞外基质慢性游走性红斑、进行性眼外肌麻痹、肌红蛋白尿电机神经元疾病,铁粒幼细胞贫血、MERRF-线粒体肌病、肌阵挛(癫痫)、线粒体脑肌病、、MERRF、线粒体肌病、共济失调并发色素性视网膜炎、,家族性双侧纹状体坏死、共济失调并发色素性视网膜炎、家族性双侧纹状体坏死、骨骼肌溶解症、婴儿猝死综合征等等疾病。 

线粒体病遗传方式复杂,导致疾病的原因主要由核基因和线粒体基因造成,临床表现复杂,确切病因的诊断十分困难,往往通过大分子酶学活性检测分析并结合遗传学基因分析的双重手段确定病因。 

线粒体基因组属于母系遗传,为了避免新生儿缺陷,产前妈妈的线粒体基因组分析十分必要。

线粒体实验

染色观察

线粒体——示教:3号片

小狗胰脏,Regaud氏液固定,石蜡切片,铁苏木素染色。

线粒体用铁苏木素染色呈黑色,分布于核周围的细胞质中,线粒体在高倍镜下呈粒状、线状或短棒状,或直或曲,轮廓鲜明。

胰脏的分泌细胞呈锥形,核大而圆,位于细胞中央,细胞游离端聚集有许多大而圆的黑色颗粒为分泌颗粒。

提取观察

线粒体是细胞中重要的细胞器,存在于绝大多数生活细胞中,它的主要功能是提供细胞内各种物质代谢所需要的能量。正由于这样,对线粒体膜,呼吸链酶及线粒体DNA等成分的结构,功能以及物理化学性质的研究已经成为细胞生物学研究中的重要课题,所以提取线粒体的技术已经成为线粒体研究中必不可少的手段,线粒体大量存在于代谢旺盛的细胞中,如动物的心肌,肝,肾等器官和组织的细胞中,大量置备线粒体就是从这些器官组织中提取,当所用样品较少时(如电镜和光镜的观察)可采用从组织培养细胞中提取,本实验就是介绍两种材料制备用于光镜观察的线粒体。 

一、目的与要求

了解提取线粒体的基本原理及其过程,通过光学显微镜的观察了解体外分离的线粒体的一般形态 

二、 基本原理

线粒体具有完整的结构,一定的大小和质量,低温条件下在等渗液中破碎细胞,差速离心后,获得线粒体。经活性染料健那绿Janus green B染色,线粒体呈浅蓝色。 

三、实验内容

1.线粒体的分离提取 2. 鼠肝的匀浆制备 3. 线粒体的活体染色 

四、实验步骤

(一)动物组织线粒体的分离,提取与观察

显微镜检查:将1%Janus green B溶液按1:1比例加入线粒体悬液中,在室温或水浴中染15~20分钟,用吸管吸取一滴线粒体悬液,滴于载玻片上,加盖玻片后,放显微镜下进行观察,线粒体为蓝绿色圆形颗粒。

2.组织培养细胞的线粒体的提取与观察

五、操作中应该注意的问题

1. 整个操作过程为保证线粒体的完整,应尽量使操作时的环境如温度(0—4℃),pH (7.0左右)保持恒定,同时尽可能短操作时间。 

2. 组培细胞消化时要特别小心,防止损失或反复。(损失指细胞脱落到消化液中)。

3. 匀浆时,所用的介质一定是等渗缓冲液,常用的有0.25 mol/L蔗糖溶液或生理盐水代替Hank’s液 

4. 匀浆次数依照匀浆器的松紧而定,次数过少,细胞破损不完全,就会影响线粒体产量。 

5. 所以取2/3上清夜用来制备线粒体是为防止细胞碎片过多影响观察。 

6. 整个分离过程,一般最好在30—60分钟内完成,不宜过长。光合作用中放大太阳能那无声的轰鸣。

相关词条

相关搜索

其它词条