沖擊地壓

沖擊地壓

岩石爆裂并彈射出來的現象
岩爆沖擊地壓,又稱岩爆,這是一種岩體中聚積的彈性變形勢能在一定條件下的突然猛烈釋放,導緻岩石爆裂并彈射出來的現象。常伴有煤岩體抛出、巨響及氣浪等現象。它具有很大的破壞性,是煤礦重大災害之一。
    中文名:沖擊地壓 外文名:rock burst 适用領域: 所屬學科: 發生原因:硐室開挖過程中發生岩爆 防治措施:應力解除、注水軟化 特 點:突發性、部位集中性等 又稱:岩爆

簡介

沖擊地壓是聚集在礦井巷道和采場周圍岩體的能量突然釋放。在井巷中發生的爆炸事故。動力将煤岩抛向巷道,同時發出強烈聲響,造成煤岩體振動和煤岩體破壞、支架與設備、人員傷亡,部分巷道跨落破壞等。沖擊地壓具有突發性、發生條件複雜性的特點。

世界上幾乎所有國家都不同程度地受到沖擊地壓的威脅。 1783年英國在世界上首先報導了煤礦中所發生的沖擊地壓現象。以後在前蘇聯、南非、德國、美國、加拿大、印度、英國等幾十個國家和地區,沖擊地壓現象時有發生。

在中國,沖擊地壓最早于1933年發生在撫順勝利煤礦。随着我國煤礦開采深度不斷增加,開采強度不斷加大,沖擊地壓礦井分布越來越廣,北京、撫順、莊、開灤、大同、北票、南桐等礦區多次發生沖擊地壓事故并導緻人員傷亡。據不完全統計,國有礦井有沖擊地壓紀錄的礦井有150多處,随着開采向深部轉移,沖擊地壓問題将更加嚴重、更加突出、更為普遍。

由于沖擊地壓問題極為複雜,國内外目前尚未建立比較符合實際的沖擊地壓發生及破壞過程的理論,因而沖擊地壓的預測、預報及防治并不完備。

特征

突發性

發生前一般無明顯前兆,沖擊過程短暫,持續時間為幾秒到幾十秒。

一般表現為煤爆(煤壁爆裂、小塊抛射)。

淺部沖擊(發生在煤壁2m~6m範圍内,破壞性大)和深部沖擊(發生在煤體深處,聲如悶雷,破壞程度不同)。最常見的是煤層沖擊,也有頂闆沖擊和底闆沖擊,少數礦井發生了岩爆。在煤層沖擊中,多數表現為煤塊抛出,少數為數十平方米煤體整體移動,并伴有巨大聲響、岩體震動和沖擊波。

破壞性

往往造成煤壁片幫、頂闆下沉、底鼓、支架折損、巷道堵塞、人員傷亡。

複雜性

在自然地質條件上,除褐煤以外的各煤種,采深從200m~1000m,地質構造從簡單到複雜,煤層厚度從薄層到特厚層,傾角從水平到急斜,頂闆包括砂岩、灰岩、油母頁岩等,都發生過沖擊地壓;在采煤方法和采煤工藝等技術條件方面,不論水采、炮采、普采或是綜采,采空區處理采用全部垮落法或是水力充填法,是長壁、短壁、房柱式開采或是柱式開采,都發生過沖擊地壓。隻是無煤柱長壁開采法沖擊次數較少。

分類

沖擊地壓可根據應力狀态、顯現強度和發生的不同地點和位置進行分類。

根據原岩(煤)體的應力狀态分類

(1)重力應力型沖擊地壓。主要受重力作用,沒有或隻有極小構造應力影響的條件下引起的沖擊地壓。如棗莊、撫順、開灤等礦區發生的沖擊地壓。

(2)構造應力型沖擊地壓。主要受構造應力(構造應力遠遠超過岩層自重應力)的作用引起的沖擊地壓,如北票礦務局和天池煤礦發生的沖擊地壓。

(3)中間型或重力~構造型沖擊地壓。主要受重力和構造應力的共同作用引起的沖擊地壓。

根據沖擊的顯現強度分類

(1)彈射。一些單個碎塊從處于高應力狀态下的煤或岩體上射落,并伴有強烈聲響,屬于微沖擊現象。

(2)礦震。它是煤、岩内部的沖擊地壓,即深部的煤或岩體發生破壞,煤、岩并不向已采空間抛出,隻有片帶或塌落現象,但煤或岩體産生明顯震動,伴有巨大聲響,有時産生煤塵。較弱的礦震稱為微震,也稱為煤炮。

(3)弱沖擊。煤或岩石向已采空間抛出,但破壞性不很大,對支架、機器和設備基本上沒有損壞;圍岩産生震動,一般震級在2.2級以下,伴有很大聲響;産生煤塵,在瓦斯煤層中可能有大量瓦斯湧出。

(4)強沖擊。部分煤或岩石急劇破碎,大量向已采空間抛出,出現支架折損、設備移動和圍岩震動,震級在2.3級以上,伴有巨大聲響,形成大量煤塵和産生沖擊波。

根據震級強度和抛出的煤量分類

輕微沖擊:抛出煤量在10t以下,震級在1級以下的沖擊地壓。

中等沖擊:抛出煤量在10t~50t以下,震級在1級~2級的沖擊地壓。

強烈沖擊:抛出煤量在50t以上,震級在2級以上的沖擊地壓。

一般面波震級Ms=1時,礦區附近部分居民有震感;Ms=2時,對井上下有不同程度的破壞;Ms>2時,地面建築物将出現明顯裂縫破壞。

根據發生的地點和位置分類

(1)煤體沖擊。發生在煤體内,根據沖擊深度和強度又分為表面、淺部和深部沖擊。

(2)圍岩沖擊。發生在頂底闆岩層内,根據位置有頂闆沖擊和底闆沖擊。

成因機理

對沖擊地壓成因和機理的解釋主要有強度理論、能量理論、沖擊傾向理論和失穩理論。

強度理論

該理論認為,沖擊地壓發生的條件是礦山壓力大于煤體——圍岩力學系統的綜合強度。

其機理為:較堅硬的頂底闆可将煤體夾緊,阻礙了深部煤體自身或煤體——圍岩交界處的變形。由于平行于層面的摩擦阻力和側向阻力阻礙了煤體沿層面的移動,使煤體更加壓實,承受更高的壓力,積蓄較多的彈性能。從極限平衡和彈性能釋放的意義上來看,夾持起了閉鎖作用。在煤體夾持帶内,壓力高、并儲存有相當高的彈性能,高壓帶和彈性能積聚區可位于煤壁附近。一旦高應力突然加大或系統阻力突然減小時,煤體可産生突然破壞和運動,抛向已采空間,形成沖擊地壓。

能量理論

該理論認為:當礦體與圍岩系統的力學平衡狀态破壞後所釋放的能量大于其破壞所消耗能量時,就會發生沖擊地壓。剛性理論也是一種能量理論,它認為發生沖擊地壓的條件是:礦山結構(礦體)的剛度大于礦山負荷系(圍岩)的剛度,即系統内所儲存的能量大于消耗于破壞和運動的能量時,将發生沖擊地壓。但這種理論并未得到充分證實,即在圍岩剛度大于煤體剛度的條件下也發生了沖擊地壓。

沖擊傾向理論

該理論認為:發生沖擊地壓的條件是煤體的沖擊傾向度大于實驗所确定的極限值。可利用一些試驗或實測指标對發生沖擊礦壓可能程度進行估計或預測,這種指标的量度稱為沖擊傾向度。其條件是:介質實際的沖擊傾向度大于規定的極限值。

這些指标主要有:彈性變形指數、有效沖擊能指數、極限剛度比、破壞速度指數等。

上述三種理論提出了發生沖擊地壓的三個準則,即強度準則、能量準則和沖擊傾向度準則。其中強度準則是煤體破壞準則,能量準則和沖擊傾向度準則是突然破壞準則。三個準則同時成立,才是産生沖擊地壓的充分必要條件。

失穩理論

中國一些學者認為:根據岩石全應力——應變曲線,在上凸硬化階段,煤、岩抗變形(包括裂紋和裂縫)的能力是增大的,介質是穩定的;在下凹軟化階段,由于外載超過其峰值強度,裂紋迅速傳播和擴展,發生微裂紋密集而連通的現象,使其抗變形能力降低,介質是非穩定的。在非穩定的平衡狀态中,一旦遇有外界微小擾動,則有可能失穩,從而在瞬間釋放大量能量,發生急劇、猛烈的破壞,即沖擊地壓。

由此,介質的強度和穩定性是發生沖擊的重要條件之一。雖然有時外載未達到峰值強度,但由于煤岩的蠕變性質,在長期作用下其變形會随時間而增大,進入軟化階段。這種靜疲勞現象,可以使介質處于不穩定狀态。在失穩過程中系統所釋放的能量可使煤岩從靜态變為動态過程,即發生急劇、猛烈的破壞。

影響因素

地質因素

主要包括開采深度、地質構造、煤岩結構和力學特性等。

開采深度的加大使地應力值增加。一般在達到一定開采深度後才開始發生沖擊地壓,此深度稱為沖擊地壓臨界深度。臨界深度值随條件不同而異,一般大于200m,總的趨勢是随采深增加,沖擊危險性增加。這主要是由于随采深增加,原岩應力增大的緣故。

地質構造如褶曲、斷裂、煤層傾角及厚度突然變化等也影響沖擊地壓的發生。寬緩向斜軸部易于形成沖擊地壓;斷裂如是一個開采邊界,若回采方向朝向斷層面,則沖擊危險增加;煤層傾角和厚度局部突然變化地帶,實際是局部地質構造應力積聚地帶,因而極易發生沖擊地壓。

煤岩結構及性能也是沖擊地壓影響的主要因素。堅硬、厚層、整體性強的頂闆(老頂),易形成沖擊地壓;直接頂厚度适中、與老頂組合性好、不易冒落,沖擊危險較大;煤的強度高、彈性模量大、含水量低、變質程度高、暗煤比例大,一般沖擊傾向較強。

開采技術因素

開采多煤層時,任何造成應力集中的因素,如開采程序不合理、本層回采不幹淨、相鄰兩層開采錯距不合适等,均對防治沖擊地壓不利。從防治沖擊地壓的角度而言,璧式開采優于柱式開采,旱采優于水采,直線工作面優于曲線工作面,冒落法優于充填法。煤柱和開采邊界是最主要的應力集中因素,應盡量避免和減少這些因素的有害影響。

國内外大量實踐表明,沖擊地壓往往伴随着井下生産過程的某些工序(如爆破、冒頂、采煤等)而發生,這些因素稱為誘導因素。誘導因素本身的能量可能很小,但其誘發沖擊地壓而釋放的能量及其破壞性卻很大。因而,誘導因素也是發生沖擊地壓的一個不可忽視的因素。

預報

WET法

該方法是波蘭采礦研究總院提出的,用于測定煤層沖擊傾向。WET為彈性能與永久變形消耗能之比。波蘭采礦研究總院規定:WET>5為強沖擊傾向;2

彈性變形法

它是前蘇聯礦山測量研究院提出的用于測定沖擊地壓的方法。即在載荷不小于強度極限80%的條件下,用反複加載和卸載循環得到的彈性變形量與總變形量之比(K),作為衡量沖擊傾向度的指标。當K≥0.7時,有發生沖擊地壓的危險。

煤岩強度和彈性系數法

該方法是用煤岩的單向抗壓強度或彈性模量的絕對值,作為衡量沖擊傾向度的指标。這種方法較為簡單,經常用作輔助指标。其指标的界限值必須根據各礦井的試樣進行試驗确定。

中國《煤礦安全規程》中規定:“開采沖擊地壓煤層時,沖擊危險程度和采取措施後的實際效率,可采用鑽粉率指标法、地音法、微震法等方法确定”。

鑽粉率指标法

鑽粉率指标法又稱為鑽粉率指數法或鑽孔檢驗法。它是用小直徑(42mm~45mm)鑽孔,根據打鑽不同深度時排出的鑽屑量及其變化規律來判斷岩體内應力集中情況,鑒别發生沖擊地壓的傾向和位置。在鑽進過程中,在規定的防範深度範圍内,出現危險煤粉量測值或鑽杆被卡死的現象,則認為具有沖擊危險,應采取相應的解危措施。

地音、微震監測法

岩石在壓力作用下發生變形和開裂破壞過程中,必然以脈沖形式釋放彈性能,産生應力波或聲發射現象。這種聲發射亦稱為地音。顯然,聲發射信号的強弱反映了煤岩體破壞時的能量釋放過程。由此可知,地音監測法的原理是,用微震儀或拾震器連續或間斷地監測岩體的地音現象。根據測得的地音波或微震波的變化規律與正常波的對比,判斷煤層或岩體發生沖擊傾向度。

山東肥城礦務局陶莊煤礦用微震儀研究了發生沖擊礦壓的規律,結論為:微震由小而大,間有大小起伏,次數和聲響頻繁;在一組密集的微震之後變得平靜,是産生沖擊礦壓的前兆現象;稀疏和分散的微震是正常應力釋放現象,無沖擊危險。

根據震相曲線和地震學的知識,則可以計算出發生沖擊地壓的震源位置。由于各種煤岩體的地音和微震特性不同,并且又具有不均質性和各向異性等特點,其傳播速度有很大差異。此外,各處的地質和開采條件也不相同,礦井下又常有強烈的環境噪音幹擾,地音或微震信号在煤岩體中産生和傳播情況将是很複雜的,可能産生多次的反射、折射和繞射,還可能發生波型變換等現象。因而在使用中應注意與其他預測方法綜合使用,特别是與鑽屑法綜合使用,以保證預測的準确性。

工程地震探測法

用人工方法造成地震,探測這種地震波的傳插速度,編制出波速與時間的關系圖,波速增大段表示有較大的應力作用,結合地質和開采技術條件分析、判斷發生沖擊地壓的傾向度。

綜合測定法

為了能夠更準确地判斷出發生沖擊地壓的地點和時間,可同時采用上述兩種以上的方法,根據多因素的變化,綜合加以确定。國内外常使用的是鑽屑法、地音監測法、地質及開采技術條件分析的綜合方法。

相關詞條

相關搜索

其它詞條